ඝනත්වය
ද්රව්යයක ස්කන්ධ ඝනත්වය හෝ ඝනත්වය අර්ථ දක්වා ඇත්තේ එම ද්රව්යයේ ඒකක පරිමාවකට ඇති ස්කන්ධය යනුවෙනි. ඝනත්වය සඳහා සාමාන්යයෙන් භාවිතා කරන සංකේතය වනුයේ ρ (ග්රීක හෝඩියේ රෝ අක්ෂරය) ය. සමහර අවස්ථාවල දී (උදාහරණයක් ලෙස ඇමරිකා එක්සත් ජනපදයේ තෙල් සහ ගෑස් කර්මාන්තයේ දී) ද්රව්යයේ ඒකක පරිමාවක බර ලෙස ද ඝනත්වය අර්ථ දක්වනු ලැබේ. [1] ;(එනමුත්, ඒකක පරිමාවක බර යන්න නිවැරදි ව හඳුන්වන්නේ විශිෂ්ට බර යනුවෙනි.) විවිධ ද්රව්යවලට සාමාන්යයෙන් ඇත්තේ විවිධ ඝනත්වයන් ය. එබැවින්, උත්ප්ලාවකතාව, සංශුද්ධ කිරීම සහ ඇසුරුම්කරණය යන සංකල්ප සැලකීමේ දී ඝනත්වය වැදගත් සාධකයක් වේ. සම්මත උෂ්ණත්ව හා පීඩන තත්ත්ව යටතේ දී වැඩිම ඝනත්වයක් ඇති ද්රව්යය ඔස්මියම් වේ.
එකිනෙක මිශ්ර නොවන තරල දෙකක් සැලකීමේ දී ඝනත්වය අඩු තරලය ඝනත්වය වැඩි තරලය උඩ පාවේ. ඝනත්වය අඩු ඝන ද්රව්යය, ඝනත්වය වැඩි තරල මත පාවෙන බව ද, මෙම සංකල්පය ම තව දුරටත් විස්තීරණය කිරීමෙන් කිව හැක. කිසියම් වස්තුවක සාමාන්ය ඝනත්වය (දිය ඉමට යටින් ඇති වාතය ඇතුලත් ව) , ජලයේ ඝනත්වය (1.0 gmL-1)ට වඩා අඩු නම් එය ජලයේ පාවෙන අතර එහි ඝනත්වය ජලයේ ඝනත්වයට වඩා වැඩි නම් එය ජලයේ ගිලෙයි.
විශිෂ්ට ගුරුත්වය හෝ සාපේක්ෂ ඝනත්වය යනු ඝනත්වය, ඒකක රහිත රාශියක් ලෙස දැක්වීමට යොදා ගන්නා රාශීන් ය. මෙහිදී ජලය හෝ වාතය/වායුවක් වැනි සම්මත ද්රව්යයක ඝනත්වයෙහි ගුණාකාරයක් ලෙස විශිෂ්ට ගුරුත්වය ප්රකාශ කරනු ලැබේ. (උදාහරණයක් ලෙස, විශිෂ්ට ගුරුත්වය 1 ට වඩා අඩු ය යන්නෙන් අදහස් වන්නේ එම ද්රව්යය ජලයේ පාවෙන බව යි.)
ද්රව්යයක ස්කන්ධ ඝනත්වය උෂ්ණත්වය හා පීඩනය සමග විචලනය වේ. (එම විචලනය සාමාන්යයෙන් ඝන හා ද්රව සඳහා කුඩා වන අතර වායු සඳහා ඊට වඩා වැඩි වේ.) වස්තුවක් මත ක්රියා කරන පීඩනය වැඩිවත් ම එහි පරිමාව අඩු වන අතර එහි ප්රතිඵලයක් වශයෙන් ඝනත්වය වැඩි වේ. ද්රව්යයක උෂ්ණත්වය වැඩි වත්ම එහි ගරිමාව වැඩි වීම නිසා ඝනත්වය අඩු වේ. රත් වූ තරලයක ඝනත්වය අඩු නිසා, බොහෝ පදාර්ථවල තරලයට යටින් රත් කරන විට තාපය පහළ සිට ඉහළට සංවහනය වීම සිදු වේ.
තාප ගති විද්යාව බහුල ව භාවිත වන විශිෂ්ට පරිමාව යනුවෙන් අදහස් වන්නේ කිසියම් ද්රව්යයක ඝනත්වයෙහි පරස්පරයයි.ඝනත්වය ඝටනා ගුණයකි. එනම්, ද්රව්යයේ ප්රමාණය වැඩි වත් ම එහි ස්කන්ධය වැඩි වූව ද එහි ඝනත්වය වෙනස් නොවේ.
ඉතිහාසය
[සංස්කරණය]ඉතා ප්රසිද්ධ නමුත් අසත්ය විය හැකි ජනප්රවාදයකට අනුව, දෙවියන් උදෙසා පූජා කිරීමට නියමිත ව තිබූ රන් ඔටුන්න නිමැවීමේ දී ලාභදායී මිශ්ර ලෝහයක් කලවම් කිරීමෙන් සයිරකස් හි හයිරෝ රජු ගේ රන්කරුවා රත්තරන් වංචාවක් සිදු කළේ දැයි පරීක්ෂා කිරීමේ කාර්යය ආකිමිඩීස් ට භාර දෙන ලදී. [2] අක්රමවක් හැඩැති ඔටුන්න, තැලීමෙන් ඝනකයක් බවට පත් කර පහසුවෙන් පරිමාව ගණනය කර ස්කන්ධය සමග සැසඳිය හැකි බව ආකිමිඩිස් දැන සිටියේ ය. නමුත්, රජතුමා එයට අවසර නොදුන්නේ ය. අනතුරුව දිනක් ආකිමිඩිස් නාන ඔරුවක ගිලී නාමින් සිටි අවස්ථාවක හේ ඔරුව තුළ ගිලීමේ දී ජල මට්ටම ඉහළ යනු දැක, විස්ථාපනය වන ජල පරිමාව මගින් රන් ඔටුන්නේ පරිමාව සොයා ගත හැකි බව නිරීක්ෂණය කළේ ය. මේ සොයා ගැනීම නිසා ප්රීතියට පත් වූ ඔහු, නාන ඔරුවෙන් එළියට පැන නිරුවතින් ම යුරේකා! යුරේකා! (Εύρηκα! ග්රීක භාෂාවෙන් "සොයාගත්තා!") කියමින් වීදිය දිගේ දුවන්නට විය. එහි ප්රතිඵලයක් ලෙස, එතැන් සිට යුරේකා යන වදන, කිසියම් දෙයක් අවබෝධ කරගත් අවස්ථාවක් හැඟවීමට පොදු ව්යවහාරයේ භාවිත කෙරේ.
මෙම කථාව ප්රථම වරට ලිඛිත මාධ්යයෙන් පලවූයේ මාකස් විටෲවියස් පෝලියෝ ගේ වාස්තු විද්යා පොත් වල ය. ඒ, මෙය සිදු වී ශතවර්ෂ දෙකක් ඉක්ම ගිය පසු ය. [3] අන් කරුණු කෙසේ වෙතත්, එම කාලයේ දී මෙම ක්රමය සඳහා අවශ්ය වන ඉතා නිවැරදි මිනුම් ලබා ගැනීම දුෂ්කර වන්නට ඇති නිසා මෙම කතාවේ නිරවද්යතාවය ගැන ඇතැම් විද්වත්හු සැක පහළ කරති.[4][5]
ලක්ෂයක ඝනත්වය එහි මුළු ස්කන්ධය ත් මුළු පරිමාව ත් අතර අනුපාතයට සමා වේ. සුදුසු තුලාවක් භාවිත කරමින් ස්කන්ධය මැනිය හැක. පරිමාව ඍජුවම (වස්තුවෙහි ජ්යාමිතිය අනුව) හෝ තරලයක් විස්ථාපනය කිරීම මගින් හෝ සොයා ගත හැක. දී ඇති වස්තුව සමජාතීය නොවේ නම්, එම වස්තුව මත ලක්ෂ්යයක ඝනත්වය එම ලක්ෂ්යයේ පිහිටීමෙහි ශ්රිතයක් වේ. එවැනි අවස්ථාවක දී ඇති ස්ථානයක ඝනත්වය, එම ස්ථානය වටා කුඩා පරිමාවක ඝනත්වය ගණනය කිරීම තුළින් සොයා ගත හැක. ඒ අනුව සමජාතීය නොවන වස්තුවක ඉතා කුඩා පරිමාවක ඝනත්වය ලබා දෙනුයේ මෙම සමීකරණය මගිනි. ρ(r)=dm/dV, මෙහි dVයනු r පිහිටීමෙහි ආරම්භක පරිමාව යි. වස්තුවෙහි ස්කන්ධය පහත පරිදි දැක්විය හැක.
කුඩා කැටිති වලින් යුත් ද්රව්යයක ඝනත්වය එක් එක් අවස්ථාවේ දී වෙනස් විය හැක. එය, ද්රව්යයේ පරිමාව අර්ථ දක්වන ආකාරය අනුව වෙනස් වේ. එසේ ම මැනීමේ දෝශවලට ද හේතු විය හැක. සුලබ ම උදාහරණය වන්නේ වැලි ය. වැලි, මෘදු ලෙස බඳුනකට වත්කළහොත් ඝනත්වය අඩු ය. එම වැලි පරිමාව ම සම්පිණ්ඩණය කොට දැමුවහොත් එහි පරිමාව අඩු වීම නිසා වැඩි ඝනත්වයක් ප්රදර්ශනය කරයි. අන් සියළු අංශුමය ද්රව්ය මෙන් ම වැලිවල ද, අංශු අතර වාතය වැඩි ප්රමාණයක් රැඳී තිබීම මෙයට හේතුව යි.
ඝනත්වයෙහි ඒකක
[සංස්කරණය]ගණිතමය වශයෙන්, ස්කන්ධය හා පරිමාව අතර අනුපාතය ලෙස ඝනත්වය අර්ථ දැක්වේ.
මෙහි ρ යනු ඝනත්වය යි; m යනු ස්කන්ධය යි; V යනු පරිමාව යි. මෙම සමීකරණය අනුව ස්කන්ධ ඝනත්වයෙහි ඒකක විය යුත්තේ පරිමාවෙහි ඒකකය ට ස්කන්ධයෙහි ඒකකය යි. ස්කන්ධය හා පරිමාව මැනීමට විවිධ විශාලත්ව ආවරණය කිරීමට ඒකක අධික ප්රමාණයක් තිබීම නිසා ස්කන්ධ ඝනත්වයට ද ඒකක විශාල සංඛ්යාවක් භාවිත වේ.
ඝනත්වය මැනීමේ අන්තර්ජාතික සම්මත ඒකකය ඝන මීටරයට කිලෝ ග්රෑම්ය; (kg/m³) සෙන්ටිමීටර-ග්රෑම්-තත්පර ක්රමයට අනුව ඝන සෙන්ටිමීටරයට ග්රෑම්ය. (g/cm³) (ඝන සෙන්ටිමීටර යන්න මිලිලීටර ලෙස ද හැඳින්විය හැක.) ඝන සෙන්ටිමීටරයට ග්රෑම් 1 ක් යන්න ඝන මීටරයට කිලෝ ග්රෑම් 1000ක් යන්නට සමාන වේ. කර්මාන්තයේ දී, ස්කන්ධයෙහි සහ පරිමාවෙහි අනෙක් කුඩා හෝ විශාල ඒකක භාවිතය වඩා ප්රායෝගික වන අතර මෙට්රික් ඒකක ද භාවිතා කරනු ලැබේ. ඝනත්වයෙහි වඩා ත් පොදු ඒකක සඳහා පහත බලන්න.
ඝනත්වයෙහි වෙනස්වීම්
[සංස්කරණය]සාමාන්යයෙන් පීඩනය හෝ උෂ්ණත්වය වෙනස් කිරීම මගින් ඝනත්වය වෙනස් කළ හැක. පීඩනය වැඩි වීමෙන් ඝනත්වය ඉහළ යන අතර උෂ්ණත්වය වැඩි කිරීමෙන් ඝනත්වය අඩු වේ. නමුත් මෙම සාමාන්යයීකරණය තුළ සැලකිය යුතු අපගමනයවීම් ද දැකිය හැක. නිදසුනක් ලෙස ජලයෙහි ඝනත්වය එහි දුවාංකය වන 0 °C සහ 4 °C අතර දී වැඩි වේ. සිලිකන් සඳහා ද අඩු උෂ්ණත්වවල දී මීට සමාන හැසිරීමක් දැකිය හැක.
උෂ්ණත්වය සමග ද්රවවල ඝනත්වය වෙනස්වීමρ= ρ0 - K1T - K2T2 යන සමීකරණයෙන් දැක්විය හැක. මෙහි ρ0, K1 හා K2 නියතයන් වේ. K1 හැම ද්රවයක් සඳහා ම ධන අගයක් ගනී. K2 බොහෝ ද්රව සඳහා ධන වේ. රසදිය, හයිඩ්රජන් ෆ්ලෝරයිඩ්, කාබන් ටෙට්රක්ලෝරයිඩ් යන ද්රව සඳහා K2 ඍණ වේ. උෂ්ණත්වය හා පීඩනය නොවෙනස් ව පවතින විට එකිනෙකට මිශ්ර කළ විට පරිමාවෙහි වෙනක් ඇති නොවන ද්රාවණයන් හා ඝනත්වය එම ද්රාවණවල සාන්ද්රණයට (ඝන සෙන්ටිමීටරයට ග්රෑම්වලින්) සමානුපාතික වේ. එහෙත් බොහෝ ද්රාවණ මිශ්ර කිරීමේ දී පරිමාවේ වෙනසක් දක්නට ලැබේ. නිදසුනක් වශයෙන් 25 °C දී ක්ලෝරෆෝම් ද්රාවණයකට මීකයිල් අයඩයිඩ් ටික ටික යෙදීමෙන් මවුලික ද්රාවණයක් සාදන ලදැයි සිතමු. මෙහි දී මුල දී පරිමාවේ අඩු වීමක් දක්නට ලැබේ. මීතයිල් අයඩයිඩ්වල මවුල භාගය 0.3 වන විට පරිමාවේ වෙනසක්ඇති නොවේ. සාන්ද්රණය මීට වැඩි වන විට පරිමාවෙහි වැඩි වීමක් දක්නට ලැබේ.
ද්රව සහ ඝන වල ඝනත්වය සඳහා පීඩනයේ සහ උෂ්ණත්වයේ බලපෑම අඩු ය. සාමාන්ය ද්රවයක හෝ ඝනයක සම්පීඩ්යතාව 10−6 bar−1 (1 bar=0.1 MPa) වන අතර සාමාන්ය තාපජ ප්රසාරණතාව 10−5 K−1 වේ. මේ අනුව ද්රව්යයක පරිමාව 1% කින් අඩු කිරීමට වායුගෝලීය පීඩනය මෙන් දස දහස් වාරයක් විශාල පීඩනයක් ලබා දිය යුතු වේ. එසේ ම පරිමාව 1% කින් වැඩි කිරීමට අවශ්ය උෂ්ණත්ව වැඩි වීම සෙල්සියස් අංශක දහස් ගණනක් වේ.
වායුවක ඝනත්වය සඳහා පීඩනය ප්රබල ලෙස බලපායි. පරිපූර්ණ වායුවක ඝනත්වය,
මෙහි Mයනු මවුලික ස්කන්ධය යි; P යනු පීඩනය යි; R යනු සර්වත්ර වායු නියතය යි; T යනු නිරපේක්ෂ උෂ්ණත්වය යි. මේ අනුව පීඩනය දෙගුණ කිරීමෙන් හෝ නිරපේක්ෂ උෂ්ණත්වය අඩක් කිරීමෙන් පරිපූර්ණ වායුවක ඝනත්වය දෙගුණ කළ හැක.
ජලයෙහි ඝනත්වය (වායුගෝල 1ක පීඩනයේ දී)
[සංස්කරණය]උෂ්: (°C) | ඝන්තවය (kg/m3) |
---|---|
100 | 958.4 |
80 | 971.8 |
60 | 983.2 |
40 | 992.2 |
30 | 995.6502 |
25 | 997.0479 |
22 | 997.7735 |
20 | 998.2071 |
15 | 999.1026 |
10 | 999.7026 |
4 | 999.9720 |
0 | 999.8395 |
−10 | 998.117 |
−20 | 993.547 |
−30 | 983.854 |
සෙල්සියස් අංශකවලින් මනින ලද විවිධ උෂ්ණත්වවල දී ජලයේ ඝනත්වය ඝන මීටරයට කිලෝග්රෑම් වලින් (SI ) මෙහි දී 0 °C යන්නෙන් අධිශීතනය කළ ජලය අර්ථ දැක්වේ. |
වාතයේ ඝනත්වය (වායුගෝල 1ක පීඩනයේ දී)
[සංස්කරණය]උෂ්: (°C) | ඝනත්වය (kg/m3) |
---|---|
–25 | 1.423 |
–20 | 1.395 |
–15 | 1.368 |
–10 | 1.342 |
–5 | 1.316 |
0 | 1.293 |
5 | 1.269 |
10 | 1.247 |
15 | 1.225 |
20 | 1.204 |
25 | 1.184 |
30 | 1.164 |
35 | 1.146 |
ද්රාවණවල ඝනත්වය
[සංස්කරණය]ද්රවණයක ඝනත්වය යනු ද්රාවණයේ ඇති සංරචකවල ස්කන්ධ සාන්ද්රණය යි.
ද්රාවණයක් ඇත්ර ඇති සංරචකවලින් දී ඇති සංරචකයක ස්කන්ධ (ස්කන්ධීය) සාන්ද්රණය ρi, එම සංරචකයෙහි ආශික ඝනත්වය ලෙස හැඳින්විය හැක.
විවිධ ද්රව්යවල ඝනත්වයන්
[සංස්කරණය]ද්රව්ය | ρ (kg/m3) | සටහන් |
---|---|---|
තාරකා අතර මාධ්යය | 10−25 − 10−15 | 90% H, 10% He උපකල්පනය කරමින්; විචල්ය T |
පෘථිවියේ වායුගෝලය | 1.2 | මුහුදු මට්ටමේ දී |
Aerogel | 1 − 2 | |
රිජිෆෝම් | 30 − 120[6] | |
කිරල ඇබ | 220 − 260[6] | |
පොටෑසියම් | 860[7] | ස.උ.පී. දී |
සෝඩියම් | 970 | ස.උ.පී. දී |
අයිස් | 916.7 | |
ජලය (පිරිසිඳු) | 1000 | ස.උ.පී. දී |
ජලය (ලවණ) | 1030 | |
මැංගනීස් | 1740 | ස.උ.පී. දී |
ප්ලාස්ටික් | 850 − 1400 | |
මැග්නීසියම් | 1740 | ස.උ.පී. දී |
බෙරිලියම් | 1850 | ස.උ.පී. දී |
ග්ලිසරෝල්[8][9] | 1261 | |
සිලිකන් | 2330 | ස.උ.පී. දී |
ඇලුමිනියම් | 2700 | ස.උ.පී. දී |
ටයිටේනියම් | 4540 | ස.උ.පී. දී |
සෙලීනියම් | 4800 | ස.උ.පී. දී |
පෘථිවිය | 5515.3 | මධ්යන්ය ඝනත්වය |
වැනේඩියම් | 6100 | ස.උ.පී. දී |
ඇන්ටිමනි | 6690 | ස.උ.පී. දී |
සින්ක් | 7000 | ස.උ.පී. දී |
ක්රෝමියම් | 7200 | ස.උ.පී. දී |
මැංගනීස් | 7210 - 7440 | ස.උ.පී. දී |
ටින් | 7310 | ස.උ.පී. දී |
යකඩ | 7870 | ස.උ.පී. දී |
නයෝබියම් | 8570 | ස.උ.පී. දී |
කැඩිමියම් | 8650 | ස.උ.පී. දී |
කොබෝල්ට් | 8900 | ස.උ.පී. දී |
නිකල් | 8900 | ස.උ.පී. දී |
තඹ | 8920 − 8960 | කාමර උෂ්ණත්වයේ දී |
බිස්මත් | 9750 | ස.උ.පී. දී |
මොලිබ්ඩිනම් | 10220 | ස.උ.පී. දී |
රිදී | 10500 | ස.උ.පී. දී |
ඊයම් | 11340 | කාමර උෂ්ණත්වයේ දී |
තෝරියම් | 11700 | ස.උ.පී. දී |
රෝඩියම් | 12410 | ස.උ.පී. දී |
පෘථිවියේ අන්තර් මාධ්යය | ~13000 | |
රසදිය | 13546 | ස.උ.පී. දී |
ටැන්ටලම් | 16600 | ස.උ.පී. දී |
යුරේනියම් | 18800 | ස.උ.පී. දී |
ටංග්ස්ටන් | 19300 | ස.උ.පී. දී |
රත්රන් | 19320 | ස.උ.පී. දී |
ප්ලූටෝනියම් | 19840 | ස.උ.පී. දී |
ප්ලැටිනම් | 21450 | ස.උ.පී. දී |
ඉරිඩියම් | 22420 | ස.උ.පී. දී |
ඔස්මියම් | 22570 | ස.උ.පී. දී |
සූර්යයාගේ අන්තර් මාධ්යය | ~150000 | |
සුදු තරු | 1 × 109[10] | |
පරමාණුක න්යෂ්ඨිය | 2.3 × 1017 [11] | න්යෂ්ඨියේ ප්රමාණය මත බලනොපායි |
නියුට්රෝන තරුව | 8.4 × 1016 − 1 × 1018 | |
කළු කුහරය | 4 × 1017 |
මිශ්රණවල ඝනත්වය
[සංස්කරණය]ඇමරිකා එක්සත් ජනපදයේ, ASTM D792-00 නිරූපිතය[12] විස්තර කරන අන්දමට මිශ්රණයක ඝනත්වය පහත පරිදි ගණනය කළ හැක.
මෙහි,
- යනු මිශ්රණයේ ඝනත්වය, g/cm3 වලින්
සහ
- යනු වාතයේ දී ඇටවුමේ බර ය.
- යනු අර්ධ ව ගිලී ඇති විට ඇටවුමේ බර ය.
- යනු ආස්රැත ජලයේ පූර්ණ ව ගිලී ඇති විට ඇටවුමේ බර ය.
- යනු 23 °C දී ආස්රුත ජලයේ ඝනත්වය g/cm3 වලිනි.
වෙනත් පොදු ඒකක
[සංස්කරණය]ඝනත්වය සඳහා ජාත්යන්තර සම්මත ඒකකය :
- ඝන මීටරයට කිලෝග්රෑම් (kg/m³)
ලීටර සහ මෙට්රික් ටොන් ජාත්යන්තර සම්මත ඒකකවලට අයත් නොවූව ද, ඝනත්වය සඳහා ඒවා ද යොදා ගත පිළිගත හැකි ය.
- ලීටරයට කිලෝග්රෑම් (kg/L)
- මිලිලීටරයට ග්රෑම් (g/mL)
- ඝන මීටරයට මෙට්රික් ටොන් (t/m³)
පහත සියළු ම ඒකකවලින් ලබා දෙන සංඛ්යාත්මක අගය kg/m³ වලින් ලබා දෙන අගය මෙන් දහසෙන් පංගුවකට සමාන වේ. ද්රව ජලයේ ඝනත්වය 1 kg/dm³ වේ.
- ඝන ඩෙසිමීටරයට කිලෝග්රෑම් (kg/dm³)
- ඝන සෙන්ටිමීටරයට ග්රෑම් (g/cc, gm/cc or g/cm³)
- ඝන මීටරයට මෙගාග්රෑම් (Mg/m³)
මෙට්රික් ඒකක වලින්,
- ඝන අඟලට අවුන්ස (oz/cu in)
- ඝන අඟලට පවුම් (lb/cu in)
- ඝන අඩියට පවුම්(lb/cu ft)
- ඝන යාරයට පවුම්(lb/cu yd)
- ඇමරිකානු ද්රව ගැලුමට පවුම්(lb/gal)
- බුසලට පවුම්(lb/bu)
- ඝන අඩියට slugs
බලන්න
[සංස්කරණය]මූලාශ්ර
[සංස්කරණය]- ^ "Density definition in Oil Gas Glossary". Oilgasglossary.com. සම්ප්රවේශය 2011-02-09.
- ^ ආකිමිඩීස්, රත්රන් හොරා සහ උත්ප්ලාවකතාව - ලැරී හැරිස් ටේලර් , Ph.D. විසින්
- ^ වාස්තුවිද්යාව තුළ විටෲවියස්, IX වන කාණ්ඩය, 9-12 ඡේද, ඉංග්රීසි පරිවර්තනය සහ ලතින් භාෂාවෙන් ලියැවුණු මුල් පිටපත.
- ^ පළමු යුරේකා සංසිද්ධිය, විද්යාව 305: 1219, අගෝස්තු 2004.
- ^ සත්යයක් ද? ප්රබන්ධයක් ද?: ආකිමිඩිස් ස්නානයේදී ගොඩනැංවූ යුරේකා භාෂිතය, Scientific American, December 2006.
- ^ a b "Re: which is more bouyant [sic] styrofoam or cork". Madsci.org. සම්ප්රවේශය 2010-09-14.
- ^ සැකිල්ල:Cite CRC Press Handbook of tables for Applied Engineering Science, 2nd Edition, 1976, Table 1-59
- ^ glycerol composition at physics.nist.gov
- ^ Glycerol density at answers.com
- ^ Extreme Stars: White Dwarfs & Neutron Stars, Jennifer Johnson, lecture notes, Astronomy 162, Ohio State University. Accessed on line May 3, 2007.
- ^ Nuclear Size and Density, HyperPhysics, Georgia State University. Accessed on line June 26, 2009.
- ^ (2004). Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM Standard D792-00. Vol 81.01. American Society for Testing and Materials. West Conshohocken. PA.
බාහිර සබැඳි
[සංස්කරණය]- Glass Density Calculation - Calculation of the density of glass at room temperature and of glass melts at 1000 - 1400 °C
- List of Elements of the Periodic Table - Sorted by Density
- Calculation of saturated liquid densities for some components
- field density test සංරක්ෂණය කළ පිටපත 2010-12-15 at the Wayback Machine
- On-line calculator for densities and partial molar volumes of aqueous solutions of some common electrolytes and their mixtures, at temperatures up to 323.15 K.[permanent dead link]
- Water - Density and Specific Weight
- Temperature dependence of the density of water - Conversions of density units
- A delicious density experiment සංරක්ෂණය කළ පිටපත 2015-07-18 at the Wayback Machine
- Liquid density calculator[permanent dead link] Select a liquid from the list and calculate density as a function of temperature.
- Gas density calculator[permanent dead link] Calculate density of a gas for as a function of temperature and pressure.