ඩී.එන්.ඒ.

විකිපීඩියා, නිදහස් විශ්වකෝෂය වෙතින්
(ඩී.එන්.ඒ වෙතින් යළි-යොමු කරන ලදි)
වෙත පනින්න: සංචලනය, සොයන්න
DNA ව්‍යුහය

ඩිඔක්සිරයිබෝ-නියුක්ලෙයික්-ඇසිඩ් හෙවත් DNA යනු, සෑම ජීවියෙකුගේම හා සමහර වෛරසවල වර්ධනය හා ක්‍රියාකාරීත්වය පිළිබඳ තොරතුරු / මඟ පෙන්වීම් (ජානමය තොරතුරු) අඩංගු නියුක්ලෙයික් අම්ල වේ. DNA අණුවල වැදගත්ම කාර්යභාරය නම් දත්ත ගබඩා කිරීමයි. RNA , ප්‍රෝටීන වැනි අනෙකුත් සෛල සංඝටක තැනීමට ඇති තොරතුරු / උපදෙස් DNA තුළ ඇති බැවින් එය සැලසුම් කෙටුම්පතකට සමාන කළ හැක. DNA වල මෙම තොරතුරු අඩංගු වන කොටස ජානයක් ලෙස හඳුන්වයි. එමෙන්ම තවත් DNA කොටස් ව්‍යුහිත වශයෙන් ක්‍රියා කරන අතර තවත් සමහරක් ප්‍රවේණි තොරතුරු ප්‍රයෝජනයට ගැනීම පාලනය කරයි. රසායනිකව DNA යනු නියුක්ලියෝටයිඩ නම් ඒකකවලින් තැනුනු මහා අණුවකි. එහි කොඳු ඇට පෙළ සීනි හා පොස්ෆේට් අණු එස්ටර බන්ධනවලින් බැඳී තැනී ඇත. එක් සීනි අණුවකට එක බැඟින් බැඳුණු භෂ්ම වර්ග හතරක් ඇත. මෙම භෂ්ම බැඳී ඇති අනුපිළිවෙලිනුයි ප්‍රවේණි දත්ත ගබඩා වී ඇත්තේ. මෙම භෂ්ම කේතයේ ඇති තොරතුරු ප්‍රෝටීන නිෂ්පාදනයේ ඇමීනෝ අම්ල අනුපිළිවෙල තීරණය කරයි. පිටපත් වීම හා පරිවර්තනය යන ක්‍රියාවලිය මඟින් මෙම DNA කේතයෙහි පණිවුඩය RNA අණුවල අනුපිලිවෙලක් බවට පරිවර්තනය කෙරේ.

ඩී එන් ඒ (DNA) අම්ලයක භෞතික සහ රසායනික ගුණ[සංස්කරණය කරන්න]

සෛල තුළ DNA ප්‍රවේණි ද්‍රව්‍ය ලෙස සංවිධානය වී ඇත. DNA පිටපත්වීම නමින් හඳුන්වන ක්‍රියාවලිය මඟින් මෙම ප්‍රවේණි දේහ සියල්ලේ කොපියක් සෛල මඟින් විභාජනයට පෙර දෙගුණ කර ගනී. සෛල න්‍යෂ්ටිය තුළ යුකැරියෝටාවනුත් සෛල ප්ලාස්මයේ ප්‍රෝ‍කැරියෝටාවනුත් මෙම ගබඩා කර ඇත. හිස්ටොන් නමින් හැඳින්වෙන ක්‍රොමැටින් ප්‍රෝටීන DNA මඟින් ප්‍රවේණි ද්‍රව්‍යයේ DNA හොඳින් අසුරා සංවිධානය කරයි. DNA වල කුමන කොටසක් ප්‍රෝටීන බවට පරිවර්තනය කරන්නේ ද යන්න මඟින් DNA හා අනෙකුත් ප්‍රෝටීන අතර අන්තර්ක්‍රියාවලට මඟ පෙන්වීම මෙම හොඳින් ඇසුරණු කොටසක් තීරණය කරයි.

ඩී එන් ඒ යනු නියුක්ලියෝමයිඩ් ජනක එකට බන්මිනය වී නිර්මාණය වු බහුඅයවය කි. ඩී. එන් ඒ බන්ධයන් ඇන්ස්ට්‍රම් ( 2.2 – 2.6) පළල් (2.2-2.6 නැනෝමිටර්) අතර එක් නියුක්ලියොමයිඩ් ඒකකයක් අණුවක් කුඩා වුවත් මෙවැනි කුඩා විුක්ලියෝමයිඩ් ඒකක මිලියන ගණනක් එකට බන්ධනය විමෙන් ඩී.එන් ඒ නිර්මාණය වන නිසා ඩී එන් ඒ යනු ඉතා විශාල අණු සංඛ්‍යාවන් සහිත බදු අයවයවකි. උදාහරනයක් වශයෙන් මනුෂ්‍යාගේ විශාලතම වර්ණදේහය වන වර්ණ දේහ අංක 1 දළ වශයෙන් බේස් පෙයාර් මිලියන 220 දිගය.

ජීවි අයයන් තුළ සැමවිටම ඩී.එන් අණු දෙදක් එකිනෙකට තදින්ම සම්බන්ධ වි ද්විත්ව පවති. මෙලෙස ඉතා දිගු රටවල් දෙකක් වැල් මෙන් එකට එකි ද්විත්ව සර්පිල හැයෙන් පවති. මෙහිදි නියුක්ලියෝමයිඩ් ඩි.එන් බන්ධනයට එකය පවත්වාගෙන යන අතර ද්විතය සර්පිලයේ ඇති අනෙක් ඩි එන් එහි බන්ධනය හා සම්බනධතා පැවැත්විමට නියුක්තියොමයිඩ් සිදු කරයි

ඩි.එන් ඒ පටකය ප්‍රාණ නලාළිය පොස්පේට් සහ සිනි අවශේෂයන් තුළින් නිර්මාණය වි ඇත. ඩී.එන්.ඒ නිර්මාණය වි ඇති පෙන්ටෝස් සීනි ලෙසින් හදුන්වනු ලබයි. පොස්පේට් ඛාණ්ඩ තුළින් සිනි අංශු එකට බැදි පවතින අතර ඒවා තුළින් පොස්පාඩිස්ටර් බන්ධනය නිර්මාණය වි ඇත මෙම අවස්ථිත බන්ධනය තුළින් ඩී.එන්.ඒ පටයකින් හට නිශ්චිත දිශාවන් ඇති බව පෙන්නුම් කරයි. ද්විතව සර්පිලයක එක් ඩී.එන් ඒ පටකයක ඇති නියුක්ලියොමයිඩ් ඒකකයන්හි දිශව අනෙක් ඩි.එන් ඒ පටයේ ඇති නුයක්ලියොමයිඩ් ඒකකටන් හි දිශාව වඩා වෙනස් ට. ඩි එන් ජී තුළ ඇති විශේෂ සැලකිම ප්‍රතිසමාන්තර ලෙසින්ද හදුන්වනු ලබයි. අස්මිතික ඩි.එන් ඒ අග්‍ර ප්‍රයිම් 5 සහ ප්‍රයිම් 3 ලෙස මැදින්වේ. අග්‍රය පොස්පෙට් ඛණ්ඩයික් අවසන් වන පටක ප්‍රයිම් 5 ලෙසින් ද අග්‍රය හයිඩ්‍රොක්සිල් වල අවසන් වන පටය ප්‍රයිම් 3 ලෙසින් ද හදුන්වනු ලැබේ. ඩී.එන්.ඒ වල අඩංගු වෙන්ටෝස් සිනි වෙනුවට ආර් එන් ඒ රීබොස් වලින් නිර්මාණය වි තිබිම ආර්.ඒ.ජ් දසහ ඩී එන් ඒ වල ප්‍රධාන වෙනස් වේ.

ඩී .එන් ඒ ද්විත්ව සර්පිලය හයිඩ්‍රජන් බන්ධන මගින් ස්ථිර බන්ධනය වි පවති. ඩි.එන් ඒ පටයන් දෙක සම්බන්ධ වි ඇති පාදම මත මෙම හයිඩ්‍රජන් බන්ධන පිහිටා ඇත. ඩී.එන් ඒ බන්ධන තුළ ඇති පාදම ඇඩෙනි සිඩොසින් ගුහන්නි සහ තීමි ලෙසින් හදුන්වනු ලබයි. මෙම පාදම විනි පොස්ටේස් අණු සමග සම්බන්ධව පවතින අහිතකර නිුක්ලෝමයිස් අණුව සම්පූර්ණ කිරිම එමගින් සිදු කරයි.

DNA ප්‍රතිවලිත වීම[සංස්කරණය කරන්න]

ඩී.එන්.ඒ. ප්‍රතිවලිත වීමේදී නයිට්‍රගනීය-භෂ්ම, හයිඩ්‍රජන් බන්දන වලින් බිදී නව ඩී.එන්.ඒ. දාමය හට ගැනීම.

DNA අණුවක් පොලිනියුක්ලියෝටයිඩ් දාම දෙකකින් සමන්විත වේ. පොලිනියුක්ලියෝටයිඩ දාම දෙක එකිනෙක සම්බන්ධ වී ඇත්තේ එක් එක් පොලිනියුක්ලියෝටයිඩ් දාම වල නියුක්ලියෝටයිඩ වල අනුපූරක භෂ්ම යුගල් අතර හයිඩ්‍රජන් බන්ධන ඇතිවීම මගිනි. DNA ප්‍රතිවලිත වීමේදී මෙම හයිඩ්‍රජන් බන්ධන DNA අණුවේ එක් කෙලවරෙක සිට බිඳ වැටීම සිදුවේ. මෙසේ හයිඩ්‍රජන් බන්ධන බිඳ වැටීම නිසා මාතෘ පොලිනියුක්ලියෝටයිඩ් දාම දෙක එකිනෙකින් ඈත් වේ. මේ නිසා මාතෘ පොලිනියුක්ලියොටයිඩ් දාමයේ භෂ්ම පිටතට විවර වේ. වෙන් වූ මාතෘ පොලිනියුක්ලියෝටයිඩ් දාම ඉදිරියේ අනුපූරක නයිට්‍රජනීය භෂ්ම සහිත නියුක්ලියෝටයිඩ් එකතු වී ඒවා පොස්පොඩයිඑස්ටර බන්ධන වලින් බැඳීමෙන් දුහිතෘ පොලිනියුක්ලියෝටයිඩ් දාම කොටස් සෑදේ. මේ සඳහා DNA පොලිමරේස් එන්සයිමය වැදගත් වේ.

ඩී.එන්.ඒ. පරීක්ෂණවල ඉතිහාසය[සංස්කරණය කරන්න]

Francis Crick- ෆ්‍රැන්සිස් ක්‍රික්

ඩී.එන්.ඒ මුල් වරට හදුනා ගන්නා ලද්දේ ස්විස්ජාතික වෛද්‍යවරයෙකු වූ ෆේඩ්රික් මිස්චර් විසින් 1969 දී ඉවත දමන ලද සැරහුමක තිබී හදුනාගන්නා ලද අන්වීක්ෂීය ද්‍රව්‍යයක් මගිණි. එය සෛලවල න්‍යෂ්ටියෙහි අන්තර්ගත වූ බැවින් ඔහු එයට “නියුක්ලේයින්” යයි හදුන්වන ලදී. 1919 දී මෙම සොයාගැනීම් අනුව යමින් ෆෝබියස් ලෙවින් විසින් නියුක්ලියෝටයිඩ ඒකකයක අන්තර්ගත භෂ්ම, සීනි, සහ පොස්පේට කාණ්ඩ හදුනා ගන්නා ලදී. ලෙවින් යෝජනා කළ අන්දමට ඩී.එන්.ඒ සෑදී ඇත්තේ පොස්පේට් කාණ්ඩ මගින් එකිනෙක සම්බන්ධ වූ නියුක්ලියෝටයිඩ ඒකක ද‍ාමයකිනි. කෙසේ වුවද ලෙවින් විශ්වාස කරන ලද්දේ මෙම දාමය ඉතා කෙටි වන බවත් භෂ්ම වර්ග යම්කිසි නියමිත පිළිවෙලකට අනුව පුණරාවර්තී වන බවත්ය. 1937 දී විලියම් ඇස්ට්බරි මුල්ම වරට එක්ස් කිරණ විවර්ථනයට භාජනය කරමින් ඩී.එන්.ඒ වලට ක්‍රමවත් ව්‍යුහයක් ඇති බව පෙන්නුම් කරන ලදී.

1928 දී ෆේඩ්රික් ග්‍රිෆික් කරන ලද සොයා ගැනීමකට අනුව මරණයට පත් වූ මෘදු බැක්ටීරියාවන් ජීවී රළු බැක්ටීරියා ප්‍රභේද සමග මිශ්‍ර කළ විට නියුමෝ කොකස් බැක්ටීරියා විශේෂයෙහි මෘදු යන ගති ලක්ෂණය එම විශේෂයම බැක්ටීරියාවන්ගේ රළු ගති ලක්ෂණය බවට හුවමාරු කළ හැකි බවයි. මෙමසොයා ගැනීම මගින් ඩී.එන්.ඒ ප්‍රවේනි තොරතුරු රැගෙන යන බවට හෙලිවුණු අතර 1943 දී ඔස්වල්ඩ් ඇවේරි, කොලින් මැක්ලියොයිඩ් සහ මැක්ලින් මැකාටි විසින් ඩී.එන්.ඒ තොරතුරු පරිණාමය කරන මුලධර්මය ලෙසට හදුනා ගන්නා ලදී. 1952 දී ප්‍රවේනිය සදහා ඩී.එන්.ඒ වල කෘත්‍ය තහවුරු කරන ලද අතර ඇල්ප්‍රඩ් හර්ෂේ සහ මාර්තා චේස් විසින් සිදු කළ හර්ෂේ සහ චේස් පරික්ෂණ මගින් ඩී.එන්.ඒ යනු ප්‍රවේනික ද්‍රව්‍ය වන බව පෙන්වන ලදී. 1953 දී රොසලින්ට් ෆෑන්ක්ලින් විසින් සිදු කරන ලද එක්ස් කිරණ විවර්ථන ප්‍රතිභිම්බ වලින් ලද තොරතුරු මත පදනම්ව සහ භෂ්ම යුගලනය විය හැකි බව සොයාගැනීමත් සමගම ජේම්ස් ඩී වොට්සන් සහ ෆැන්සිස් ක්‍රික් විසින් නූතනයේදී පවා පිළිගැනෙන මුල්ම ඉතා නිරවද්‍ය ඩී.එන්.ඒ වල ආකෘතිය Nature නම් සගරාවෙහි පල කරන ලදී. එම සගරාවෙහිම ලිපි 5 ක වොට්සන් සහ ක්‍රික් විසින් සොයා ගන්නා ලද ආකෘතිය සදහා පරීක්ෂණාත්මක සාක්ෂි සදහන්ව ඇත. ෆ්‍රැන්ක්ලින් සහ රේමන් ගොස්ලින් විසින් ප්‍රකාශයට පත් කරන ලද මුල්ම ලිපිවල වොට්සන් සහ ක්‍රික් ආකෘතිය සදහා සහාය දෙන එක්ස් කිරණ විවර්ථන දත්ත සදහන්ව ඇත. මෙහි මොරිස් විල්කින්ස් සහ ඔහුගේ සමකාලීනයන් විසින් සොයා ගන්නා ලද ඩී.එන්.ඒ හි ආකෘතිය පිළිබදව ලිපියක් ද අන්තර්ගත වේ. 1962 දී ෆ්‍රෑන්ක්ලින්ගේ මරණයෙන් පසුව වොට්සන්, ක්‍රික් සහ විල්කින්ස් එක්ව භෞතික විද්‍යාව සහ වෛද්‍ය විද්‍යාව සදහා නොබෙල් ත්‍යාගය හිමිකර ගත්හ. කෙසේ නමුදු මෙම සොයා ගැනීම හා සම්බන්ධ කීර්තිය කා සදහා හිමි විය යුක්තක් ද යන්න තව දුරටත් මතභේදාත්මකය.

1957 දී අණුක ජීව විද්‍යාව පිළිබදව ක්‍රික් විසින් සිදුකරන ලද ඉදිරිපත් කිරීමක් අනුව ඔහු ඩී.එන්.ඒ, අ‍ාර්.එන්.ඒ සහ ප්‍රෝටීන අතර සම්බන්ධතාවයක් ඇති බවට පූර්විකාවක් සිදුකළ අතර අනුවර්තනය පිළිබදව උපකල්පනයක් ද ගොඩ නගන ලදී. 1958 දී සිදුකරන ලද පරීක්ෂණ මගින් ඩී.එන්.ඒ වල ද්විත්ව හේලිප්සීය ව්‍යුහය සොයා ගැනීමත් සමගම එහි ගුණනය වීමේ ක්‍රියාවලිය අවසාන වශයෙන් තහවුරු කරන ලදී. ක්‍රික් සහ ඔහුගේ ගෝලයන් විසින් ප්‍රවේනි කේත කෝඩෝන හෙවත් එකිනෙකට අතිපිහිත නොවන භෂ්ම ත්‍රිත්වයකින් සෑදි ඇති බව සොයා ගන්නා ලදී. මෙමගින් හර් ගෝබින්ඩ් ක්හෝරානා, රොබට් හෝලි සහ මාෂල් වොරන්ට් සදහා ජාන ප්‍රවේනි කේත කියවා තේරුම් ගැනීමේ හැකියාව ලබාදුනි. මෙම සොයා ගැනීම මගින් අණුක ජීව විද්‍යාවෙහි උපත සිදුවේ.

"https://si.wikipedia.org/w/index.php?title=ඩී.එන්.ඒ.&oldid=357806" වෙතින් සම්ප්‍රවේශනය කෙරිණි