කළු කුහර

විකිපීඩියා, නිදහස් විශ්වකෝෂය වෙතින්
Jump to navigation Jump to search
පරිඝනයකින් ගොඩනැගූ විශාල Magellanic වලාකුළ ඉදිරයෙන් ඇති කළු කුහරයක දර්ශනයක්. කළු කුහරයේ Schwarzschild අරය සහ නිරීක්ෂකයාට ඇති දුර අතර අනුපාතය 1:9 කි. මෙහිදී අයින්ස්ටයින් වලල්ළ ලෙසින් හැඳින්වෙන ගුරුත්ව කාච හැසිරීම කැපී පෙනේ. එහිදී වලාකුළේ විශාල, දීප්තිමත් මෙන්ම විරූපී ප්‍රතිබිම්භ දෙකක් නිර්මාණය වේ.

කළු කුහරයක් යනු කිසිදු පදාර්ථයකට මෙන්ම ආලෝකයට පවා පිටවිය නොහැකි අභ්‍යවකාශයේ ප්‍රදේශයකි. එය ඉතාමත් ඝන වූ ස්කන්ධයක් විසින් අවකාශ-කාල විරූපී කිරීමේ ප්‍රතිඵලයකි. කළු කුහරය වටා පවතින්නේ හඳුනා ගත නොහැකි, සිද්ධි ක්ෂිතිජය යනුවෙන් හැඳින්වෙන, නැවත නොපැමිනී‍මේ සීමාව ලකුණු කරන මතුපිටයි. එය කළු ලෙස හඳුන්වන්නේ එය මතට පතිත වන කිසිදු විද්‍යුත් චුම්භක තරංගයක් හෝ අංශුවක් පරාවර්තනය නොකර සම්පූර්ණයෙන් අවශෝෂණය කරගන්නා නිසාය. (තාප ගති විද්‍යාවේ එන කෘෂ්ණ වස්තු (Black Body) වැනිය).[1] ක්වොන්ටම් විද්‍යාවට අනුව කළු කුහර, සීමිත උෂ්ණත්වයකින් යුතු වස්තුවක් මෙන්, හෝකින් කිරණ විහිදුවයි. මෙම උෂ්ණත්වය කළු කුහරයේ ප්‍රමාණය අනුව අඩු වන බැවින් විශාල ස්කන්ධයකින් යුතු කළු කුහර නිරීක්ෂණය කිරීම අපහසුය.

එය අදෘශ්‍ය වුවත්, වෙනත් පදාර්ථ සමග සිදුවන අන්තර්ක්‍රියා මගින් කළු කුහර හඳුනාගත හැකිය. අවකාශයේ ප්‍රදේශයක් වටා පරිභ්‍රමණය වන තරු පොකුරක චලන රටා අධ්‍යනය කිරීමෙන් කළු කුහරයක පිහිටීම හඳුනාගත හැකිය. එමෙන්ම, තරු යුග්මයකින් විශාල කළු කුහරයකට පදාර්ථය ඇදගන්නා විට, එම වායු සර්පිලාකිරව හැඩගැසී, අධි උෂ්ණත්වයකට භාජනය වී නිකුත් කරන විකිරණය, ප්‍රථිවි-ගත දුරෙක්ෂක මගින් හඳුනාගත හැක.

තාරකා විද්‍යාඥයින් විසින් කළු කුහර තිබිය හැකි ස්ථාන විශාල ප්‍රමාණයක් හඳුනාගෙන ඇති අතර, චක්‍රාවාට ම්‍ධ්‍යයේ supermassive කළු කුහර පැවතිය හැකි බවට සාධක සොයාගෙන ඇත. ක්‍ෂිර පථය මධ්‍යයේ Sagittarius A* ප්‍රදේශ‍යේ, සූර්ය-සකන්ධ මිලියන 2කට අධික සුපිරි-විශාල කළු කුහරයක් (Supermassive Black Hole) පවතින බවට, 1998 වර්ශයේදී, විද්‍යාඥයින් හට ශක්තිමක් සාධක හමුවුනි. නමුත් මෑතකදි කරන ලද පරීක්ෂන වලට අනුව මෙය සූර්ය-සකන්ධ මිලියන 4කට අධික විය යුතු බව සොයාගෙන ඇත.

ඉතිහාසය[සංස්කරණය]

Schwarzschild black hole
පසුතලයේ ඇති මන්දාකිණියක දර්ශනය කළු කුහරයක ගුරුත්ව කාච (gravitational lensing) වීමකට භාජනය වූ විට දැකිය යුතු ආකාරය (පරිගණක මගින් නිර්මාණය කිරීමක්) (click here for larger animation)

ඉතාමත් ඝන වස්තු මගින් ආලෝකයට පවා පිටවීමට නොහැකි අදහස මුලින්ම ඉදිරිපත් වූවේ භු විද්‍යාඥ ජෝන් මිසෂල් විසින් හෙන්රි කැවෙන්ඩිශ් හට 1783දී ලියූ ලිපියකිනි:

If the semi-diameter of a sphere of the same density as the Sun were to exceed that of the Sun in the proportion of 500 to 1, a body falling from an infinite height towards it would have acquired at its surface greater velocity than that of light, and consequently supposing light to be attracted by the same force in proportion to its vis inertiae, with other bodies, all light emitted from such a body would be made to return towards it by its own proper gravity.

—ජෝන් මිෂෙල්[2]

1796දී ගණිතඤ පියර්-සයිමන් ලා‍ප්ලේස්, එම අදහසම, ඔහුගේ Exposition du système du Monde ග්‍රන්ථයේ පළමුවන සහ දෙවන සංස්කරණ වලින් ඉදිරිපත් කර තිබුනි (පසු සංස්කරණ වලින් එය ඉවත් කෙරිණි). [3][4] එවන් අඳුරු තාරකා පිළිබඳ අදහස 19 ශතකයේ විශාල වශයෙන් ප්‍රතික්ෂේප විණි. එම කාලයේ ගුරුත්වාකර්ශෂණය මගින් ආලෝකයට බලපෑම් කල නොහැකි බවට විශ්වාස කෙරිණි.

සාමාන්‍ය සාපේක්ෂතාවාදය[සංස්කරණය]

1915 දී ඇල්බට් අයින්ස්ටයින් විසින් සාමාන්‍ය සාපේක්ෂතාවාදය ඉදිරිපත් ‍කලේ ගුරුත්වාකර්ෂණය ආලෝකයේ ගමන් මාර්ගයට බලපෑම් කරන බව පෙන්වා දීමෙන් පසුවය. ඉන් මාස කිහිපයකට පසුව Karl Schwarzschild විසින් ලක්ෂ්‍ය-ස්කන්ධයක සහ ගොලීය ස්කන්ධයක ගුරුත්වාකර්ෂණයට විසඳුමක් ලබා දුන්නේය.[5] තවත් මාස කිහිපයකට පසු Schwarzschild සහ Hendrik Lorentz ගේ ශිෂ්‍යයෙකු වූ Johannes Droste, තනි තනිවම ඒවාගේ ලක්ෂණ පිළිබඳව වැඩිදුර ලිව්වෝය.[6] This solution had a peculiar behaviour at what is now called the Schwarzschild radius, where it became singular, meaning that some of the terms in the Einstein equations became infinite. The nature of this surface was not quite understood at the time. In 1924, Arthur Eddington showed that the singularity disappeared after a change of coordinates (see Eddington coordinates), although it took until 1933 for Georges Lemaître to realize that this meant the singularity at the Schwarzschild radius was an unphysical coordinate singularity.[7]

891/5000

1931 දී සුබ්රමනියම් චන්ද්රසේකර විසින් සාමාන්ය සාපේක්ෂතාවාදයෙන් ගණනය කරන ලද අතර ඉලෙක්ට්රෝන පරිහානිගත ද්රව්ය 1.04 ස්කන්ධ ස්කන්ධයන් (චන්ද්රසේකර සීමාව) බිඳවැටෙනු ඇත. ඔහුගේ තර්කවලට එඩින්ටන් සහ ලෙව් ලන්ඩෝ වැනි බොහෝ සමකාලීනයන් විසින් විරුද්ධ වූ අතර, තවමත් නොදන්නා යාන්ත්රණයක් බිඳවැටීම නතර කරන බවට තර්ක කළහ. ඒවා අර්ධ වශයෙන් නිවැරදියි: චන්ද්රසේකර් සීමාවට වඩා කුඩා විශාල වාමනාවක් නියුට්රෝන තාරකාවක බිඳ වැටෙනු ඇත, පාවුලි බැහැර කිරීමේ මූලධර්මය නිසා ස්ථායී වේ. එහෙත් 1939 දී රොබට් ඔප්න්හෙමාර් සහ අනෙකුත් අය අනාවැකි පළ කළේ සූර්ය ස්කන්ධ 3 ක් පමණ වන නියුට්රෝන තාරකා (ටෝල්මෑන්-ඔප්න්හයිමර්-වොල්කොෆ් සීමාව) කළු කුහර බවට කඩා වැටෙනු ඇති අතර, භෞතික විද්යාවේ කිසිදු නීතියක් මැදිහත් වීමට ඉඩ නොතබන බව නිගමනය කලේය. අඩුම තරමින් සමහර තරු කළු කුහර දක්වා කඩා වැටෙනු ඇත

[8] They were partly correct: a white dwarf slightly more massive than the Chandrasekhar limit will collapse into a neutron star, which is itself stable because of the Pauli exclusion principle. But in 1939, Robert Oppenheimer and others predicted that neutron stars above approximately three solar masses (the Tolman–Oppenheimer–Volkoff limit) would collapse into black holes for the reasons presented by Chandrasekhar, and concluded that no law of physics was likely to intervene and stop at least some stars from collapsing to black holes.[9]

Oppenheimer and his co-authors interpreted the singularity at the boundary of the Schwarzschild radius as indicating that this was the boundary of a bubble in which time stopped. This is a valid point of view for external observers, but not for infalling observers. Because of this property, the collapsed stars were called "frozen stars,"[10] because an outside observer would see the surface of the star frozen in time at the instant where its collapse takes it inside the Schwarzschild radius. This is a known property of modern black holes, but it must be emphasized that the light from the surface of the frozen star becomes redshifted very fast, turning the black hole black very quickly. Many physicists could not accept the idea of time standing still at the Schwarzschild radius, and there was little interest in the subject for over 20 years.

ස්වර්ණමය යුගය[සංස්කරණය]

hello hello 1958 දී , ඩේවිඩ් ෆින්ස්කෙලේෂ්ටින් අවබෝද කරගත්ත Schwarzschild r = 2m [in geometrized units, i.e. 2Gm/c2] as an event horizon, "a perfect unidirectional membrane: causal influences can cross it in only one direction".[11] This did not strictly contradict Oppenheimer's results, but extended them to include the point of view of infalling observers. Finkelstein's solution extended the Schwarzschild solution for the future of observers falling into the black hole. A complete extension had already been found by Martin Kruskal, who was urged to publish it.[12]

These results came at the beginning of the golden age of general relativity, which is marked by general relativity and black holes becoming mainstream subjects of research. This process was helped by the discovery of pulsars in 1967,[13][14] which were within a few years shown to be rapidly rotating neutron stars. Until that time, neutron stars, like black holes, were regarded as just theoretical curiosities; but the discovery of pulsars showed their physical relevance and spurred a further interest in all types of compact objects that might be formed by gravitational collapse.

In this period more general black hole solutions where found. In 1963, Roy Kerr found the exact solution for a rotating black hole. Two years later Ezra T. Newman found the axisymmetric solution for a black hole which is both rotating and electrically charged.[15] Through the work of Werner Israel,[16] Brandon Carter,[17][18] and D. C. Robinson[19] the no-hair theorem emerged, stating that a stationary black hole solution is completely described by the three parameters of the Kerr–Newman metric; mass, angular momentum, and electric charge.[20]

For a long time, it was suspected that the strange features of the black hole solutions were pathological artefacts from the symmetry conditions imposed, and that the singularities would not appear in generic situations. This view was held in particular by Belinsky, Khalatnikov, and Lifshitz, who tried to prove that no singularities appear in generic solutions. However, in the late sixties Roger Penrose[21] and Stephen Hawking used global techniques to prove that singularities are generic.[22]

Work by James Bardeen, Jacob Bekenstein, Carter, and Hawking in the early 1970s led to the formulation of the laws of black hole mechanics.[23] These laws describe the behaviour of a black hole in close analogy to the laws of thermodynamics by relating mass to energy, area to entropy, and surface gravity to temperature. The analogy was completed when Hawking, in 1974, showed that quantum field theory predicts that black holes should radiate like a black body with a temperature proportional to the surface gravity of the black hole.[24]

The term "black hole" was first publicly used by John Wheeler during a lecture in 1967. Although he is usually credited with coining the phrase, he always insisted that it was suggested to him by somebody else. The first recorded use of the term is in a 1964 letter by Anne Ewing to the American Association for the Advancement of Science.[25] After Wheeler's use of the term, it was quickly adopted in general use.

ලක්ෂණ සහ ව්‍යුහය[සංස්කරණය]

භෞතික ලක්ෂණ[සංස්කරණය]

Class Mass Size
Supermassive black hole ~105–109 MSun ~0.001–10 AU
Intermediate-mass black hole ~103 MSun ~103 km = REarth
Stellar black hole ~10 MSun ~30 km
Micro black hole up to ~MMoon up to ~0.1 mm

සිද්ධි ක්ෂිතිජය[සංස්කරණය]

Image:BH-no-escape-1.svg
කළු කුහරයෙන් ඈතදී වස්තුවකට ඕනෑම දිශාවකට ගමන් කල හැකිය. එය සීමා වන්නේ ආලෝකයේ වේගයට පමණි.
Image:BH-no-escape-2.svg
කළු කුහරයට සමීපයෙන් කාල-අවකාශය විකෘති වීමට පටන් ගනී. කළු කුහරයේ පිටතට ගිය ගමන් මාර්ග වලට වඩා එය දෙසට ඇති ගමන් මාර්ග වැඩිය.
Image:BH-no-escape-3.svg
සිද්ධි ක්ෂිතිජයට ඇතුලදී සියලු ගමන් මාර්ග පිහිටන්නේ කළු කුහරයේ කේන්ද්‍රය දෙසටය. එතැන් සිට වස්තුවකට පිටතට පැමිණීමට නොහැකිය.


ලක්ෂ්‍ය-භාවය[සංස්කරණය]

‍‍‍ෆෝටෝන ගෝලය[සංස්කරණය]

Ergo ගෝලය[සංස්කරණය]

The ergosphere is an oblate spheroid region outside of the event horizon, where objects cannot remain stationary.

බිහිවීම සහ සකස් වීම[සංස්කරණය]

ගුරුත්වාක්ෂණ හැකිළීම[සංස්කරණය]

ගුරුත්වාකර්ෂණ හැකිලීම සිදුවන්නේ යම් වස්තුවක අංශු අතර ඇතිවන ගුරුත්වාකර්ණයට ඔරොත්තු දීමට තරම් එහි අභ්‍යන්තර පීඩනය ‍ප්‍රමාණවත් නොවීමය. තාරකාවකට මෙය සිදුවන්නේ න්‍යෂ්ටික-විලයනය මගින් එහි උෂ්ණත්වය පවත්වා ගැනීමට තරම් එහි ඉන්ධන ප්‍රමාණවත් ‍නොවීම හෝ පිටතින් අමතර පදාර්ථයක් එක්වී එහි ස්කන්ධය වැඩි වීම නිසාය. මෙවන් අවස්ථාවකදී තාරකාවේ ගුරුත්වය මගින් තමාවම හකුලවාගැනීම වැලැක්වීමට එහි උෂ්ණත්වය අසමත් වෙයි.[26]


මහා පිපිරුමේ ප්‍රථමාරම්භ කළු කුහර[සංස්කරණය]

අධි ශක්ති ඝට්ටනය[සංස්කරණය]

A simulated event in the CMS detector, a collision in which a micro black hole may be created.

වර්ධනය[සංස්කරණය]

කළු කුහරයක් ඇතිවීමෙන් පසු එය පිටතින් පදාරථ උරා ගනිමින් වර්ධනය වීමට පටන් ගනී. ඕනෑම කළු කුහරයක් දිගින් දිගටම අවට ඇති වාතය සහ අභ්‍යවකාශ දූවිලි මෙන්ම සර්වව්‍යාප්ත විශ්ව පසුබිම් විකිරණයද උරා ගනී. අධි-ස්කන්ධ කළු කුහර වරධනය වීමට ප්‍රාථමික දායක්ත්වය ලැබී ඇත්තේ මෙම කියාවලිය මගිනි.[27] ගෝලාකාර තරු පොකුරු වල මධ‍්‍යම ප්‍රමාණයේ කළු කුහර සෑදී ඇත්තේද මෙමගින් බවට යෝජනා වී ඇත.[28]

කළු කුහරයකට තාරකාවක් මෙන්ම තවත් කළු කුහරයක් සමග බද්ධ විමේ හැකියාවක් ඇත. කුඩා වස්තු කීපයක එකතුවකින් සෑදී ඇති අධි-ස්කන්ධ කළු කුහරවල ප්‍රථම අවදියේදී ඒවා වර්ධනය වීමට මෙවැනි දෑ වැගදත් වී ඇති බවට විශ්වාස ‍කෙරෙයි.[27] සමහරක් මධ‍්‍යම ප්‍රමාණයේ කළු කුහර ආරම්භය වීම සඳහා දායක වූ බවටද මෙම ක්‍රියාවලිය යෝජනා වී ඇත.[29][30]

වාෂ්පවීම[සංස්කරණය]

නිරීක්ෂණය කල සාක්ෂි[සංස්කරණය]

පදාර්ථ එකතුවීම[සංස්කරණය]

Formation of extragalactic jets from a black hole's accretion disk

X-කිරණ තරු යුග්ම[සංස්කරණය]

Artist impression of a binary system with an accretion disk around a compact object being fed by material from the companion star.

Quiescence and advection-dominated accretion flow[සංස්කරණය]

Quasi-periodic oscillations[සංස්කරණය]

ගැමා කිරණ පිපිරුම්[සංස්කරණය]

චක්‍රාවාට කේන්ද්‍ර[සංස්කරණය]

The jet originating from the center of M87 in this image comes from an active galactic nucleus that may contain a supermassive black hole. Credit: Hubble Space Telescope/NASA/ESA.

ගුරුත්ව කාච[සංස්කරණය]

ගුරුත්වාකර්ෂණ කාචයක් නිරීක්ෂකයෙකු වෙත ගමන් කරන විට ආලෝකයේ ආලෝකය විහිදුවන හැකියාවෙන් දුරස්ථ ආලෝක ප්‍රභවයක් සහ නිරීක්ෂකයකු අතර යම් ද්රව්යයක් බෙදා හැරීම (පදාර්ථ පොකුරු වැනි) බෙදා හැරීමකි. මෙම බලපෑම ගුරුත්වාකර්ෂණ ආතතිය ලෙස හැඳින්වේ. ඇල්බට් අයින්ස්ටයින්ගේ සාපේක්ෂතාවාදය පිළිබඳ සාමාන්‍ය න්‍යායේ පුරෝකථනයන්ගෙන් එකක් වන්නේ නැමීමේ ප්‍රමාණයයි.(සම්භාව්ය භෞතික විද්යාව ආලෝකයේ නැඹුරුවක් ද අනාවැකි පල කරයි, නමුත් සාමාන්ය සාපේක්ෂතාවාදයෙන් පුරෝකථනය කරන ලද භාගය පමණයි.

විකල්ප[සංස්කරණය]

විවෘත විමසීම්[සංස්කරණය]

එන්ට්‍රෝපිය සහ thermodynamics[සංස්කරණය]

කළු කුහර ඒකීය භාවය[සංස්කරණය]

භෞතික විද්‍යාව විෂයයෙහි නොවිසඳුනු ගැටළු
කළු කුහරයක් තුලදී භෞතික තොරතුරු (physical information) නැතිවෙනවාද? Question mark2.svg

මේවාත් බලන්න[සංස්කරණය]

සටහන්[සංස්කරණය]


නිර්දේශන[සංස්කරණය]

  1. Davies, P. C. W. (1978). "Thermodynamics of Black Holes" (PDF). Rep. Prog. Phys. 41: 1313–1355. doi:10.1088/0034-4885/41/8/004. Italic or bold markup not allowed in: |journal= (help)
  2. Michell, J. (1784). "On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose". Phil. Trans. R. Soc. (London). Philosophical Transactions of the Royal Society of London, Vol. 74. 74: 35–57.
  3. "Dark Stars (1783)". Thinkquest. 1999. Retrieved 2008-05-28.
  4. Laplace; see Israel, Werner (1987), "Dark stars: the evolution of an idea", in Hawking, Stephen W. & Israel, Werner, 300 Years of Gravitation, Cambridge University Press, Sec. 7.4
  5. උපුටාදැක්වීම් දෝෂය: අනීතික <ref> ටැගය; Schwarzschild1916 නමැති ආශ්‍රේයන් සඳහා කිසිදු පෙළක් සපයා නොතිබුණි
  6. Droste, J. (1915). "On the field of a single centre in Einstein's theory of gravitation". Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings. 17 (3): 998–1011.
  7. 't Hooft, G. (2009). Introduction to the Theory of Black Holes. පිටු 47–48. http://www.phys.uu.nl/~thooft/lectures/blackholes/BH_lecturenotes.pdf. 
  8. Detweiler, S. (1981). "Resource letter BH-1: Black holes". American Journal of Physics. 49 (5, pp): 394–400. doi:10.1119/1.12686.
  9. Oppenheimer, J. R. and Volkoff, G. M. (1939-01-03). "On Massive Neutron Cores". Physical Review. 55 (4): 374–381. doi:10.1103/PhysRev.55.374.CS1 maint: multiple names: authors list (link)
  10. Ruffini, Remo and Wheeler, John A. (January 1971). "Introducing the black hole" (PDF). Physics Today: 30–41.CS1 maint: multiple names: authors list (link)
  11. Finkelstein, David. "Past-Future Asymmetry of the Gravitational Field of a Point Particle". 110: 965–967. doi:10.1103/PhysRev.110.965. Text "journal " ignored (help); Cite journal requires |journal= (help)
  12. doi:10.1103/PhysRev.119.1743
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  13. Hewish, Antony; Bell, S. J.; Pilkington, J. D. H.; Scott, P. F.; Collins, R. A. (1968). "Observation of a Rapidly Pulsating Radio Source". Nature. 217: 709–713. doi:10.1038/217709a0. Retrieved 2007-07-06.
  14. Pilkington, J D H; Hewish, A.; Bell, S. J.; Cole, T. W. (1968). "Observations of some further Pulsed Radio Sources" (PDF). Nature. 218: 126–129. doi:10.1038/218126a0. Retrieved 2007-07-06.
  15. doi:10.1063/1.1704351
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  16. doi:10.1103/PhysRev.164.1776
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  17. doi:10.1103/PhysRevLett.26.331
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  18. Carter, B. (1977). "The vacuum black hole uniqueness theorem and its conceivable generalisations.". Proceedings of the 1st Marcel Grossmann meeting on general relativity. pp. 243–254. 
  19. doi:10.1103/PhysRevLett.34.905
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  20. උපුටාදැක්වීම් දෝෂය: අනීතික <ref> ටැගය; HeuslerNoHair නමැති ආශ්‍රේයන් සඳහා කිසිදු පෙළක් සපයා නොතිබුණි
  21. doi:10.1103/PhysRevLett.14.57
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  22. doi:10.1023/A:1025754515197
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  23. Bardeen, J.M.; Carter, B.; Hawking, S.W. (1973). "The four laws of black hole mechanics". Comm. Math. Phys. 31 (2): 161–170. doi:10.1007/BF01645742.
  24. උපුටාදැක්වීම් දෝෂය: අනීතික <ref> ටැගය; Hawking1974 නමැති ආශ්‍රේයන් සඳහා කිසිදු පෙළක් සපයා නොතිබුණි
  25. Michael Quinion. "Black Hole". World Wide Words. Retrieved 2008-06-17.
  26. Carroll 2004, Section 5.8
  27. 27.0 27.1 උපුටාදැක්වීම් දෝෂය: අනීතික <ref> ටැගය; ReesVolonteri නමැති ආශ්‍රේයන් සඳහා කිසිදු පෙළක් සපයා නොතිබුණි
  28. Vesperini, E.; McMillan, S.L.W.; D'Ercole, A.; D'Antona, F. (2010). "Intermediate-Mass Black Holes in Early Globular Clusters". arΧiv:1003.3470 [astro-ph.GA]. 
  29. doi:10.1038/nature02448
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  30. doi:10.1086/498446
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand

ආශ්‍රිත ග්‍රන්ථ[සංස්කරණය]

Popular reading
University textbooks and monographs
Review papers

අඩවියෙන් බැහැර පිටු[සංස්කරණය]

Videos
News
"https://si.wikipedia.org/w/index.php?title=කළු_කුහර&oldid=443912" වෙතින් සම්ප්‍රවේශනය කෙරිණි