ප්‍රභාසංශ්ලේෂණය

විකිපීඩියා, නිදහස් විශ්වකෝෂය වෙතින්
වෙත පනින්න: සංචලනය, සොයන්න
සාමුද්‍රීය ශාක ප්ලවාංග සහ භෞමික වෘක්ෂලතා යන දෙවර්ගයම ඇතුළු ගෝලීය ප්‍රභාසංශ්ලේෂණ ව්‍යාප්තිය දක්වන සංයුක්ත රූපයක්
ශාකයන්හී සිදුවන ප්‍රභාසංශ්ලේෂණ වර්ගයෙහි සමස්ත සමීකරණය
ප්‍රභාසංශ්ලේෂණයෙහි සිදුවන ද්‍රව්‍යය ප්‍රතිචක්‍රීයකරණ ක්‍රියාවලීය

ප්‍රභාසංශ්ලේෂණය යනු, ආලෝකය ඇතිවිට කාබන් ඩයොක්සයිඩ් හා ජලය උපයෝගී කරගෙන ප්‍රකාශ ස‍්වයංපෝෂී ජීවීන්ට අවශ්‍ය කාබනික ද්‍රව්‍ය සංශ්ලේෂණය කරගැනීමේ පරිවෘත්තීය ක්‍රියාවලිය යි. කාබන් චක්‍රයේදී වායුගෝලීය කාබන් ඩයොක්සයිඩ් ජීවක්‍රියාවක් සඳහා භාවිතාවන එක ම අවස්ථාව මෙය වේ. එබැවින් ඔක්සිජන්:කාබන්ඩයොක්සයිඩ් අනුපාතය නියතව තබා ගැනීම සඳහා ප්‍රභාසංශ්ලේෂණය අත්‍යාවශ්‍ය වේ.

වාච්‍යාර්ථය[සංස්කරණය]

ප්‍රභාසංශ්ලේෂණය (මෙම විද්‍යා වදනට සංස්කෘත බසින් ව්‍යවහාර වන්නේ प्रभासंयोगह् යනුවෙන් වන අතර එය ශබ්ද නැගෙන්නේ ප්‍රභාසම්යෝග ලෙසිනි. මෙහි අර්ථය ආලෝක ශක්තිය අනුසාරයෙන් සංයෝග කිරීම විය හැක. කෙසේවෙතත් प्रभा ප්‍රභා යන සංස්කෘත වදනෙහි අර්ථය "ආලෝකය" යන්න වන අතර संश्लेषिन् සංශ්ලේෂණ් යන සංස්කෘත වදනෙහි අර්ථය "එකට එක් කිරීම" යන්නයි. එනයින් ගත් කල මෙහි අරුත පැහැදිලි කර ගත හැක.) යනු ජීවියාගේ ක්‍රියාවලීන් සඳහා භාවිතා කල හැකි ඉන්ධන සපයාගැනුමට රසායනික ශක්තිය බවට හිරුගෙන් ග්‍රහණය කෙරෙන ආලෝක ශක්තිය පරිවර්තනය කිරීමට ශාක සහ ආනකුත් ජීවීන් විසින් භාවිතා කෙරෙන ක්‍රියාවලියකි. ශාක, ඇල්ගී, සහ බොහෝ බැක්ටීරියා විශේෂ තුල ප්‍රභාසංශ්ලේෂණය සිදු වන නමුත්, ආකෙයා තුල සිදු නොවේ. ප්‍රකාශ ස්වයංපෝෂියන් ලෙසින් ප්‍රභාසංශ්ලේෂක ජීවීන් හැඳින්වෙන්නේ ඔවුන් විසින්ම ඔවුන්ගේ ආහාර නිපදවාගත හැකි නිසාය. ශාක, ඇල්ගී සහ සයනොබැක්ටීරියා තුලදී, ප්‍රභාසංශ්ලේෂණය විසින් කාබන්ඩයොක්සයිඩ් සහ ජලය භාවිතා කොට, අතුරුඵලයක් ලෙසින් ඔක්සිජන් නිදහස් කරයි. පෘථිවිය මත සමස්ත සවායු ජීවය සඳහා ප්‍රභාසංශ්ලේෂණය ඉතා වැදගත් වෙයි. වායුගෝලයෙහි සාමාන්‍ය ඔක්සිජන් මට්ටම පවත්වාගෙනයෑමට අමතරව, එක්කෝ සෘජු ලෙසින් ප්‍රාථමික නිෂ්පාදනය තුලින් හෝ, වක් ලෙසින් ඔවුන්ගේ ආහාරයන්හී අත්‍යන්ත ප්‍රභවය ලෙසින් හෝ පෘථිවියෙහි සමස්ත ජීවයෙහිම වාගේ ශක්ති ප්‍රභවය වන්නේ ප්‍රභාසංශ්ලේෂණය වන අතර,[1] ව්‍යතිරේකයන් වන්නේ ගැඹුරු මුහුදේ ජලතාප වාතව් අවට හෝ ගල් තුල හෝ ජීවත් වන රසායනික ස්වයංපෝෂිතයන් වෙති. ප්‍රභාසංශ්ලේෂණය මගින් ශක්තිය ග්‍රහණය කිරීමේ අති මහත් මධ්‍යනය සීඝ්‍රතාවය දළ වශයෙන් 130 ටෙරාවොට් වන අතර,[2][3][4] එය මිනිස් ශිෂ්ටාචාරය විසින් කෙරෙන සමස්ත ජව පරිභෝජනය මෙන් සය ගුණයක් පමණ විශාල වෙයි.[5] ශක්තියෙහි ප්‍රභවයක් වන සේම, ප්‍රභාසංස්ලේෂණය ජීවින්ගේ දේහයන්හී සියළු කාබනික සංයෝගයන්හී කාබන් හී ප්‍රභවයද වෙයි. සමස්තයක් වශයෙන් ගත් කල, ප්‍රභාසංශ්ලේෂී ජීවින් විසින් වසරකට 100–115 පෙටාග්‍රෑම් පමණ කාබන් ජෛවස්කන්ධය බවට පත් කරති.[6][7]

ආලෝක ප්‍රතික්‍රියාව[සංස්කරණය]

තයිලකොයිඩ පටලයෙහි ප්‍රභාසංස්ලේෂණයෙහි ආලෝක ප්‍රතික්‍රියා

හරිතලවයේ තයිලකොයිඩ පටල මත සිදුවේ. කාබන්ඩයොක්සයිඩ් හා ජලය උපයෝගී කරගනිමින් (හිරු එළියෙන් ලැබෙන) ශක්ති පෝටෝන ඇතිවිට ග්ලූකෝස් නිපදවයි. ඔක්සිජන් අතුරුඵලයක් ලෙස පිටවන අතර ඒ, ප්‍රභාජලවිච්ඡේදනය නිසාවෙනි. ප්‍රභාපද්ධති I හා ප්‍රභාපද්ධති II නම්වූ ක්‍රියා ඒකක වර්ග දෙකක් තයිලකොයිඩ පටල මත දක්නට ලැබේ. මින් හිරුඑළිය හමුවේ පළමු ක්‍රියාකාරිත්‍වය ලබන්නේ ප්‍රභාපද්ධති II ලෙස නම්කළ ව්‍යුහය යි. එය පසුව සොයාගත්තක් නිසා එසේ නම් කර ඇත. ප්‍රභාපද්ධති II ට පෝටෝන පතිත වී එහි ඇති ඉලෙක්ට්‍රෝන උත්තේජිත අවස්ථාවට පත් වේ. ඒවා ප්‍රාථමික ඉලෙක්ට්‍රෝන ප්‍රතිග්‍රාහක ශ්‍රේණියක් හරහා ප්‍රභාපද්ධති I වෙත යොමු කෙරේ. මේ අතරතුර ප්‍රභාපද්ධති II හි ඇතිවූ ඉලෙක්ට්‍රෝන ඌණතාව වළකාලීමට ප්‍රභාවිච්ඡේදනය නොහොත් ජල අණුවක් ඔක්සිජන් හා H+(ප්‍රෝටෝන) දෙකකට බිඳලයි.

අඳුරු ප්‍රතික්‍රියාව[සංස්කරණය]

හරිතලවයේ පංජරයේ සිදු වේ. මෙය ආලෝකය ඇතිවිටත්, නොමැති විටත් එක සේ සිදුවේ. මෙහි ක්‍රියාවලීන් “කැල්වින් චක්‍රය“ නමින් මෙල්වින් කැල්වින් විද්‍යාඥයා විසින් පැහැදිලි කර ඇත.

කැල්වින් චක්‍රයේ පළමු පියවර

කැල්වින් චක්‍රය[සංස්කරණය]

ආලෝක ප්‍රතික්‍රියාවෙන් නිපැයූ NADPH හා ATP භාවිතා වේ.

  1. කාබොක්සිල්කරණය - රිබියුලෝස් බිස් පොස්පේට් කාබොක්සිලේස් එන්සයිමය; කාබන්ඩයොක්සයිඩ් සමග රිබියුලෝස් බිස් පොස්පේට් බැඳීම උත්ප්‍රේරණය කරයි. ඉන් ප්‍රභාසංශ්ලේෂණයේ ප්‍රථම අස්ථායි සංයෝගය සාදා අනතුරුව ග්ලිසරැල්ඩිහයිඩ්-3-පොස්පේට් (G3P) අණු දෙකක් බවට පත්වේ.
  2. PGA ඔක්සිහරණය - ඒ හා සබැඳෙන ATP හා NADPH මගින් බයිපොස්පොග්ලිසරේට් (PGAL) අණුවක් සාදමින් ATP → ADP බවටත් NADPH → NADP+ බවටත් පත් වේ. fuu PGAL වලින් කොටසක් කාබනික ආහාර නිපැයීමට යෙදවේ.
    කැල්වින් චක්‍රයේ දෙවන පියවර
  3. RuBP ප්‍රතිජනනය - ඉතිරි PGAL හා ATP බැඳී RuMP හරහා නැවත RuBP ඇතිවේ.

මූලාශ්‍ර[සංස්කරණය]

  1. Lua දෝෂය in Module:Citation/CS1 at line 3565: bad argument #1 to 'pairs' (table expected, got nil).
  2. Lua දෝෂය in Module:Citation/CS1 at line 3565: bad argument #1 to 'pairs' (table expected, got nil).
  3. විට්මාර්ෂ් ජේ, ගෝවින්ජී (1999). "The photosynthetic process". මෙම කෘතිය තුල: සිංහාල් ජී එස්, රෙන්ගර් ජී, සොපොරි එස් කේ, ඉර්ගැන්ග් කේ ඩී, ගෝවින්ජී. කන්සෙප්ට්ස් ඉන් ෆොටෝබයලජි: ෆොටොසින්තසිස් ඇන්ඩ් and photomorphogenesis. Boston: Kluwer Academic Publishers. පිටු. 11-51. ISBN 0-7923-5519-9. http://www.life.illinois.edu/govindjee/paper/gov.html#80. "100 x 1015 grams of carbon/year fixed by photosynthetic organisms which is equivalent to 4 x 1018 kJ/yr = 4 x 1021J/yr of free energy stored as reduced carbon; (4 x 1018 kJ/yr) / (31,556,900 sec/yr) = 1.27 x 1014 J/yr; (1.27 x 1014 J/yr) / (1012 J/sec / TW) = 127 TW." 
  4. Steger U, Achterberg W, Blok K, Bode H, Frenz W, Gather C, Hanekamp G, Imboden D, Jahnke M, Kost M, Kurz R, Nutzinger HG, Ziesemer T (2005). Sustainable development and innovation in the energy sector. Berlin: Springer. පි. 32. ISBN 3-540-23103-X. http://books.google.com/books?id=duVJsAqXlkEC&lpg=PA32&dq=photosynthesis%20terawatt&pg=PA32#v=onepage&q=photosynthesis%20terawatt&f=false. "The average global rate of photosynthesis is 130 TW (1 TW = 1 terawatt = 1012 watt)." 
  5. "වර්ල්ඩ් Consumption of Primary Energy by Energy Type and Selected Country Groups, 1980–2004" (XLS). එනර්ජි ඉන්ෆර්මේෂන් ඇඩ්මිනිස්ට්‍රේෂන්. July 31, 2006. සම්ප්‍රවේශය 2007-01-20.  zero width joiner character in |publisher= at position 31 (help)
  6. Lua දෝෂය in Module:Citation/CS1 at line 3565: bad argument #1 to 'pairs' (table expected, got nil).
  7. "Photosynthesis". McGraw-Hill Encyclopedia of Science & Technology. 13. New York: McGraw-Hill. 2007. ISBN 0-07-144143-3. 
"https://si.wikipedia.org/w/index.php?title=ප්‍රභාසංශ්ලේෂණය&oldid=341459" වෙතින් සම්ප්‍රවේශනය කෙරිණි