ත්‍රිකෝණමිතික ශ්‍රිත

විකිපීඩියා, නිදහස් විශ්වකෝෂය වෙතින්
වෙත පනින්න: සංචලනය, සොයන්න

ගණිතයේදී, ත්‍රිකෝණමිතික ශ්‍රිත (වෘත්තාකාර ශ්‍රිත ලෙසද හැඳින්වේ) යනු කෝණයක ශ්‍රිත වේ. ඒවා භාවිතා වන්නේ ත්‍රිකෝණයක කෝණ ත්‍රිකෝණයෙහි පැතිවල දිගට අදාළ කිරීමටය. වෙනත් බොහෝ භාවිතා අතර, ත්‍රිකෝණ පිළිබඳ හැදෑරීමට සහ ආවර්තික සංසිද්ධින් ආදෘශ්‍යනය කිරීමට ත්‍රිකෝණමිතික ශ්‍රිත වැදගත් වෙයි.

Circle-trig6.svg

ත්‍රිකෝණමිතික ශ්‍රිත පොදුවේ, කෝණය අඩංගු වන සෘජු කෝණි ත්‍රිකෝණයක පාද දෙකක දිග අතර අනුපාතයක් ලෙස අර්ථ දැක්විය හැකිය. එසේම ඒකක වෘත්තයක සිට විවිධ රේඛා කාණ්ඩවල දිග ලෙසද අර්ථ දැක්විය හැකිය. බොහෝ නවීන අර්ථ කථනයන් මගින් එය අපරිමිත ‍ශ්‍රේණි ලෙස හෝ අභිමත ධන හෝ සෘණ අගයන්ට හා සංකීර්ණ සංඛ්‍යාවලට පවා විස්තාරණය වූ අවල්‍ය සමීකරණවල විසඳුම් ලෙස වඩාත් පුළුල් ලෙස දැක්විය හැකිය.

ශ්‍රිත සංක්ෂේපණ සර්ව සාම්‍යයන්[සංස්කරණය]

(රේඩියන් මගින්)

  • සයිතය
  • කොසයිය
  • ටැංජනය
  • කෝසීකනය
  • සීකනය
  • කොටැංජනය


කෝණයක සියළු ත්‍රිකෝණමිතික ශ්‍රිතයන් කේන්ද්‍රය 0 වන වෘන්තයක පාදයන් මගින් ජ්‍යාමිතිකව ගොඩනැගිය හැකිය.

නවීන ව්‍යවහාරයේදී වගුගත කොට ඇති එකිනෙකට සම්බන්ධ සමීකරණ සමග මූලික ත්‍රිකෝණමිතික ශ්‍රිතයන් හයක් භාවිතා කරයි. විශේෂයෙන් අවසන් ශ්‍රිත හතරේ එම සම්බන්ධතා බොහෝ විට ගනු ලබන්නේ මුල් ශ්‍රිත දෙකේ නිර්වචන මගිනි. නමුත් ඒවා ජ්‍යාමිතිකව ගොඩනැගිය හැකිය.

මේවාත් බලන්න[සංස්කරණය]

  1. ත්‍රිකෝණමිතිය
"http://si.wikipedia.org/w/index.php?title=ත්‍රිකෝණමිතික_ශ්‍රිත&oldid=249707" වෙතින් සම්ප්‍රවේශනය කෙරිණි