දියමන්ති
දියමන්ති (Diamond - පුරාණ ග්රීක භාෂාවේ αδάμας – adámas "unbreakable" "නොකැඩෙන" අර්ථයෙනි) යනු කාබන් මූලද්රව්යයේ බහුරූපතාවයක් වන අතර, එහි කාබන් පරමාණු තල කේන්ද්ර ස්ඵටික ව්යූහයක් ගන්නා බැවින් දියමන්ති දැලිසක් ලෙස හඳුන්වනු ලැබේ. දියමන්ති මිනිරන් (Graphite) වලට වඩා අඩු ස්ථායීථාවයක් දක්වන නමුත්, දියමන්ති මිනිරන් බවට පරිවර්තනය කිරීමේ අනුපාතිකය පරිමණ්ඩිත තත්වයන් යටතේ සැලකිය යුතු තරම් නොවේ. ඉතා උසස් භෞතික ගුණාංග සහිත ඝන ද්රව්යයක් ලෙස දියමන්ති ප්රසිද්ධියක් උසුලන අතර එය පරමාණු අතර ඇති ශක්තිමත් බන්ධනයක් මඟින් හටගනී. විශේෂයෙන්ම අනෙකුත් ඝන සම්භාරයන් අතරින් දියමන්ති දෘඩ බවින් සහ තාප සන්නායකතාවයෙන් ඉහළ අගයක් ගනී. එමෙන්ම ප්රධාන කාර්මික භාවිතයක් වන දියමන්ති කැපීමේ සහ ඔප දැමීමේ උපකරණ මගින් එම ගුණාංග නිවැරදිව හඳුනා ගත හැකිය.
ඉතා අපූර්ව, සිත් ගන්නා සුළු ප්රකාශ ගති ලක්ෂණ දියමන්තිවල පවතී. එමෙන්ම දියමන්ති සෑදී ඇති අතිශයින්ම දැඩි දැලිස(සම්බන්ධතා ජාලය) හේතුවෙන් බෝරෝන්, නයිට්රජන් වායුව වැනි ඉතා සුළු වර්ගයන්හි අපවිත්රකාරක මගින් එය අපවිත්ර වේ. දියමන්ති පුළුල් පාරදෘෂ්යතාවයකින් යුක්ත බැවින් ස්වභාවික දියමන්ති වැඩි ප්රමාණයකට පැහැදිලි, වර්ණ රහිත පෙනුමක් ලැබී ඇත. කුඩා ප්රමාණයේ ඇද කුද, ඌණතා හෝ අපද්රව්ය මගින් දියමන්ති නිල්(බෝරෝන්), කහ(නයිට්රජන්), දුඹුරු(දැලිසේ අඩු පාඩු), කොළ(විකිරණ නිරාවරණය), දම්, රෝස, තැඹිලි හෝ රතු පැහැගැන්වේ. එමෙන්ම දියමන්තිවල සාපේක්ෂව විශාල ලෙස පවත්නා ප්රකාශ විසරණය හේතුවෙන් එහි ප්රභාව ලක්ෂණය ඉස්මතු වේ. දියමන්තිවල ඇති අනර්ඝ ප්රකාශ ගුණ සහ යාන්ත්රික ගුණත්, කාර්යක්ෂම අලෙවිකරණයත් සංකලනය වීම තුළ දියමන්ති මැණික් ගල් අතුරින් වඩාත් ප්රසිද්ධත්වයක් උසුලයි.
පොළොව තුළ වැඩිම ස්වභාවික දියමන්ති ප්රමාණයක් අඩංගු වී ඇත්තේ ඉතා අධික පීඩන සහ අධික උෂ්ණත්ව තත්වයන් යටතේ පොළොව මතුපිට සිට ගැඹුර කිලෝමීටර 140ත් 190ත් අතරය. ලෝහ අඩංගු කාබන් මගින් කාබන් ප්රභවය සපයන අතර වර්ධනය අවුරුදු බිලියන 1 සිට අවුරුදු බිලියන 3.3 දක්වා කාලයක් පුරා සිදුවෙමින් පවතී (පොළොවේ ආයුෂ කාලයෙන් 25%ත් 75%ත් අතර කාලයකි). දියමන්ති පොළොව මතුපිට උපද්දවනු ලබන්නේ ගැඹුරු ගිනිකඳු විදාරණය වීමෙන් පසු සිසිලනය වන ගින්නෙන් සෑදුනු ගල් මගිනි. තවත් ආකාරයකට බලන කල දියමන්ති අධික පීඩන සහ අධික උෂ්ණත්ව යටතේ ක්රියාවලියනට භාජනය කිරීමෙන්ද නිපදවා ගත හැකිය. කෙසේදයත්, සුදුසු ක්රියාකාරිත්ව තත්වයන් පොළොව මතුපිට ආසන්න වශයෙන් ඇඟවීමෙනි. විකල්ප සහ සම්පූර්ණයෙන්ම වෙනස් වර්ධන තාක්ෂණය වන්නේ රසායනික වාෂ්ප තැන්පත් කිරීමයි "chemical vapor deposition" (CVD).
ඉතිහාසය
[සංස්කරණය]දියමන්ති යන නාමයෙහි මූලාරම්භය වන්නේ පැරණි ග්රීක වචනයක් වන αδάμας (adámas), "යෝග්ය", "වෙනත් ප්රභේදයන් නොමැති", "නොකැඩෙන සුළු", "මෙල්ලකල නොහැකි", සිටἀ- (a-), "un-" + δαμάω (damáō), "I overpower", "I tame".[1] දියමන්ති ප්රථම වරට ඉන්දියාවේ ආකර ලෙස හඳුනා ගෙන ඇති බවට සංකල්පයක් පවතින අතර, ඒවා ගල්වල දියළු තැන්පතු s ලෙස ශත වර්ෂ ගණනාවකට පෙර පෙනර්, ක්රිශ්ණා සහ ගොඩවාරි යන ගංඟාවන් ආශ්රිතව සොයා ගැනීමට හැකි වී ඇත. දියමන්ති ඉන්දියාවේ අඩු තරමින් වසර 3,000ක පමණ සිට හඳුනාගෙන තිබී ඇති අතර එය ආසන්න වශයෙන් අවුරුදු 6,000ක් පමණ වේ.[2]
දියමන්ති පුරාණ ඉන්දියාවේ ආගමික සංකේතයක් ලෙස භාවිතයේ පටන් දියමන්ති මැණික් ගල් ලෙස නිධන්ගත වී තිබී ඇත. කැටයම් කපන මෙවලම් සඳහා මේවායෙහි භාවිතය පුරාණ මනුෂ්ය ඉත්හාසය දක්වා දිවයන්නකි .[3][4] සැපයීම ඉහළයාම, කැපීමේ සහ ඔපදැමීමේ තාක්ෂණ වල දියුණුව, ලෝක ආර්ථික වර්ධනය සහ නිර්මාණශීලී, සාර්ථක ප්රචාරණ ව්යාපාර නිසා දියමන්ති වල ප්රසිද්ධත්වය 19 වන සියවසේ සිට ඉහළ ගොස් ඇත. [5]
1772දී ඇන්ටන් ලවයිසර් Antoine Lavoisier විසින් කාචයක් උපයෝගී කරගනිමින් ඔක්සිජන් සහිත වායුගෝලයේ ඇති දියමන්තියක් මත හිරු කිරණ එක්තැන් කිරීමෙන් වූ දහනයෙන් ලද නිෂ්පාදිතය කාබන් ඩයොක්සයිඩ් බව පෙන්වීය. එමඟින් දියමන්ති කාබන් වලින් යුක්ත බව තහවුරු විය.පසුව 1797දී ස්මිත්සන් ටෙනන්ට්Smithson Tennant විසින් එම පර්යේෂණය තවදුරටත් විකාශනය කරමින් නැවත සිදුකරන ලදී.එම දැවීම මගින් දියමන්ති හා මිනිරන් වලින් සමාන වායු ප්රමාණයන් නිදහස් වන බව ඔහු විසින් ආදර්ශනය කළේය.මෙම වස්තූන්හි රසායනික සමානාත්මතාව එමඟින් තහවුරු කරන ලදී.[6]
වර්තමානයේ දියමන්තිවල වඩාත් සමීපතම භාවිතය, මැණික් ගල් සේම අලංකාරය සඳහා වන අතර මෙම භාවිතය ඉතා පුරාතන යුගය දක්වා දිව යයි.සුදු ආලෝකය වර්ණාවලියේ වර්ණ බවට අපකිරණය කිරීම දියමන්තිවල ප්රාථමික ගුණාංගයකි. 20 වන සියවසෙහි, මැණික් විද්යාවේ ප්රවීණයන් විසින් මැණිකක් වශයෙන් තිබිය යුතු ඉතා වැදගත් ගුණාංගවල පදනම මත දියමන්ති සහ අනෙකුත් මැණික් ගල් වර්ග කිරීමට විධික්රමයක් දියුණු කරන ලදී.
භෞතික ගුණ
[සංස්කරණය]දියමන්ති යනු කාබන් පරමාණු චතුස්තලීය ලෙස බැඳුනු දියමන්ති දැලිසක් වන අතරඑය ඝනජ තල කේන්ද්ර ව්යූහයක් ගන්නා විනිවිද පෙනෙන ස්ඵටිකයකි. මෙම වස්තූන්හි භෞතික ගුණාංග නිසාදියමන්ති විවිධ භාවිතයන් සඳහා යොදාගනී. ඒ අතුරින් වැඩි වශයෙන් සලකා බලනු ලැබෙන්නේ එහි දැඩි දෘඩතාව සහ තාප සන්නායකතාව (900–2320 W·m−1·K−1) මෙන්ම ප්රකාශ විකිරණය වේ.[7] 1700 °C (1973 K / 3583 °F) ට වඩා ඉහළ රික්තයේදී හෝ ඔක්සිජන් රහිත වායුගෝලයේදී, දියමන්ති ග්රැෆයිට් (graphite) බවට පරිවර්තනය වේ; සාමාන්ය වාතයේදී මෙම පරිවර්තනය 700 °C දී පමණ ආරම්භ වේ. දියමන්තිවල ජ්වලන අංකය ඔක්සිජන් වලදී 720 - 800 °C සහ වාතයේදී 850 - 1000 °C වේ.[8] ස්වභාවික දියමන්තිවල ඝනත්වය 3.15–3.53 g/cm3 පරාසයක පවතින අතර එය ශුද්ධ දියමන්තිවල 3.52 g/cm3 වේ.[9] දියමන්තිවල කාබන් පරමාණු අතර පවතින රසායනික බන්ධන, ග්රැෆයිට්වල බන්ධන වලට වඩා දුර්වල වේ. දියමන්තිවල මෙම බැඳීම් ස්ථිර ත්රිමාන දැලිස් ආකාරයක් ගන්නා අතර ග්රැෆයිට්වල පරමානු ඉතා දැඩිව තලයක් මත පවතී.
දෘඩතාවය
[සංස්කරණය]ස්වභාවික ද්රව්ය අතරින් දියමන්ති දෘඩතාවයෙන් වැඩිම ද්රව්ය ලෙස දෘඩතාව මිනුම් කරනා Mohs Mohs scale of mineral hardnessනම් පරිමාණයෙන් දැක්වේ. එහි දෘඩතාවය සීරීමට ඇති ප්රතිරෝධය ලෙස අර්ථ දක්වා ඇති අතර එය 1(අධික මෘදු) සහ 10(අධික දෘඩ) අතර වර්ගීකරණය කර ඇත. මෙම මිනුමෙහි දියමන්තිවල දෘඩතාවය 10ක් ලෙස සටහන් වේ.ඉතා අතීත කාලයේ පටන්ම දියමන්ති අධික දෘඩතාවයෙන් යුක්ත බව හඳුනාගෙන ඇත.
දියමන්තිවල දෘඩතාවය එහි සංශුද්ධතාවය, ස්ඵටිකරූපී බව සහ අනුස්ථාපනය මත රඳා පවතී. දියමන්තිවල දෘඩතාවය මැණික් ගල් සේම එහි යෝග්යතාවයට දායකත්වය දරනු ලබයි. මන්ද යත් එය සීරීමට ලක් කළ හැක්කේ අනෙකුත් දියමන්ති වලට පමණක් වන අතර මේවා එහි ඔපය ඉතා හොඳින් ආරක්ෂා කරගනී. අනෙක් මැණික් වර්ග මෙන් නොව දියමන්ති සීරීමට ප්රතිරෝධය දක්වන බැවින් මේවා දිනපත පැළඳීමට යෝග්ය වේ - බොහෝවිට මංගල ගිවිසගැනීමේ මුදු දිනපතා පැළඳීමට බලාපොරොත්තු වන බැවින් ඒ සඳහා වඩාත් කැමති මැණික් වර්ගයක් වන දියමන්ති යොදාගනී.
ඕස්ට්රේලියාවේ Copeton සහ Bingara ප්රදේශ වලින් අධික දෘඩතාවයෙන් යුක්ත ස්වභාවික දියමන්ති සොයාගැනේ.මේවා සාමාන්යයෙන් කුඩා වන අතර අනෙකුත් දියමන්ති ඔපදැමීම සඳහා භාවිතා කරනු ලබයි. දෘඩතාවට අදාළ වෙනත් යාන්ත්රික ගුණාංගයක් වන්නේ "ශක්තතාවයි"(toughness), කුමක්ද යත් ප්රබල ඝට්ටනයක් මගින් කැඩීමට ප්රතිරෝධනය දැක්වීමේ හැකියාවයි. ස්වභාවික දියමන්තියක ශක්තතාව 7.5–10 MPa·m1/2 ලෙස මිනුම්කර තිබේ. අනෙක් මැණික් සමඟ සසඳා බලන විට මෙම අගය හොඳ නමුත් ඉංජිනේරු ද්රව්ය සමඟ බැලීමේදී දුර්වල වේ.
විද්යුත් සන්නායකතාව
[සංස්කරණය]දියමන්තිවල විශේෂ භාවිතයක් ලෙස එහි ඇති අර්ධ සන්නායකතා ගුණය හඳුනාගත හැකිය.සමහර නිල් දියමන්ති ස්වභාවිකවම අර්ධ සන්නායක වන අතර බොහෝ දියමන්ති සලකා බැලීමේදී ඒවා අනර්ඝ තාප පරිවාරක වේ.
පෘෂ්ඨ ස්වභාවය.
[සංස්කරණය]දියමන්ති පෘෂ්ටය සෑදී ඇත්තේ ලයිසොෆීලික් සහ හයිඩ්රොෆෝබික් රසායනිකයන් එක් වීමෙනි. එමනිසා එම පෘෂ්ඨය මතුපිට ජලය රැඳීමක් හෝ පෘෂ්ඨය තෙත් වීමක් හෝ සිදු නොවේ. නමුත් එය ඉතා පහසුවෙන් තෙල් මඟින් තෙත් කල හැකිය. මෙම ගුණය දියමන්ති වෙන් කර හඳුනා ගැනීමට භාවිත කෙරෙයි.
රසායණික ස්ථාවරත්වය
[සංස්කරණය]දියමන්ති වල ඉතා දැඩි රසායණික බන්ධන ඇත. කාමර උෂ්ණත්වය යටතේදී මෙය කිසිදු අම්ලයක් හෝ ඇල්කයිඩයක් සමඟ ප්රතික්ක්රියා නොකරයි. දියමන්ති ඉතා අධික උෂ්ණත්ව තත්ව යටතෙ(1,000 °C පහළ) ඔක්සයිඩ ස්වල්පයක් සාදයි. මෙම ගුණයද දියමන්ති හඳුනා ගැනීමට හාවිතා කෙරේ. දියමන්තිවල සියලු C පරමණු අතරSP3 මුහුම්කරන වේ. SP3 කාක්ශික අතර සැදෙන ශක්තිමත් සිග්මා බණ්ධන මගින් එකට බැදි පවති. [[]
වර්ණ
[සංස්කරණය]හඳුනාගැනීම
[සංස්කරණය]දියමන්ති ඉහළ තාප සන්නයන ගුණ දරයි. එමෙන්ම එහි වර්තනාංකයද ඉහළ අගයක් ගනී. දියමන්ති වීදුරු කැපීම සඳහා ප්රයෝජනවත් වුවද එය දියමන්ති හඳුනා ගැනීමේ ලක්ෂණයක් ලෙස නොගැනේ. තිරුවානා ද වීදුරු කැපීම සඳහා භාවිත කළ හැකිය. දියමන්ති මඟින් වෙනත් දියමන්ති මත සීරීම් සිදු කළ හකි වුවත් එමඟින් එක් දියමන්තියකට හෝ දියමන්ති දෙකටම හානි සිදු විය හැකිය. මෙහි දැඩි භාවය හේතුවෙන් බොහෝ විට දෘඩතා පරීක්ෂණ වලට මේවා භාජනය කෙරේ.
නිර්මාණය වීම
[සංස්කරණය]දියමන්ති ස්වාභාවිකව නිර්මාණය වීමට එතා දිගු කාලයක් ගත වෙයි.කාබන් අඩංගු මූලද්රව්යක් අධික පීඩනයකට සහ ඊට සාපේක්ෂව පහළ උෂ්ණත්වයකට නිරාවරනය වූ විට දියමන්ති නිර්මාණය වෙයි. මෙම මූලික අවශ්යතා සපුරාලන විශේෂිත ස්ථාන ලෙස සාපේක්ෂව ස්ථාවර දූපත් තැටි අසළ භූ ස්ථරත් උල්කාපාත ගැටීම් ඇති වූ ස්ථානත් දක්විය හැකිය.
වෙළඳපොළ
[සංස්කරණය]දියමන්ති ව්යාපාරය ප්රධාන ලෙස කොටස් දෙකකට වර්ග කර දැක්විය හැකිය. එනම් මැණික් ආශ්රිත දියමන්ති ව් යාපාරය සහ කාර්මික දියමන්ති ව් යාපාරය ලෙසය. නමුත් මෙම අංශ දෙක මුලුමණින්ම වෙනස් දෙයාකාරයකට තම වෙළෙඳාම් සිදු කරනු ලැබේ.
See also
[සංස්කරණය]- Diamond drilling
- Diamonds as an investment
- List of diamonds
- List of minerals
- Aggregated diamond nanorod
References
[සංස්කරණය]- ^ Liddell, H.G.; Scott, R. "Adamas". A Greek-English Lexicon. Perseus Project.
- ^ Hershey, W. (1940). The Book of Diamonds. New York: Hearthside Press. pp. 22–28. ISBN 1-4179-7715-9.
- ^ Pliny the Elder (2004). Natural History: A Selection. Penguin Books. p. 371. ISBN 0-14-044413-0.
- ^ "Chinese made first use of diamond". BBC News. 2005-05-17. සම්ප්රවේශය 2007-03-21.
- ^ Epstein, E.J. (1982). "Have You Ever Tried To Sell a Diamond?". The Atlantic. සම්ප්රවේශය 2009-05-05.
- ^ උපුටාදැක්වීම් දෝෂය: අනීතික
<ref>
ටැගය;hazen
නමැති ආශ්රේයන් සඳහා කිසිදු පෙළක් සපයා නොතිබුණි - ^
Wei, L.; Kuo, P. K.; Thomas, R. L.; Anthony, T.; Banholzer, W. (1993). "Thermal conductivity of isotopically modified single crystal diamond". Physical Review Letters. 70 (24): 3764. Bibcode:1993PhRvL..70.3764W. doi:10.1103/PhysRevLett.70.3764. PMID 10053956.
{{cite journal}}
: More than one of|pages=
and|page=
specified (help) - ^ "Basic Properties of Diamond". DiamondBladeSelect.com.
- ^ "Diamond". Mindat. සම්ප්රවේශය 2009-07-07.
Books
[සංස්කරණය]- C. Even-Zohar (2007). From Mine to Mistress: Corporate Strategies and Government Policies in the International Diamond Industry (2nd ed.). Mining Journal Press.
- G. Davies (1994). Properties and growth of diamond. INSPEC. ISBN 0-85296-875-2.
- M. O'Donoghue, M (2006). Gems. Elsevier. ISBN 0-7506-5856-8.
- M. O'Donoghue and L. Joyner (2003). Identification of gemstones. Great Britain: Butterworth-Heinemann. ISBN 0-7506-5512-7.
- A. Feldman and L.H. Robins (1991). Applications of Diamond Films and Related Materials. Elsevier.
- J.E. Field (1979). The Properties of Diamond. London: Academic Press. ISBN 0-12-255350-0.
- J.E. Field (1992). The Properties of Natural and Synthetic Diamond. London: Academic Press. ISBN 0-12-255352-7.
- W. Hershey (1940). The Book of Diamonds. Hearthside Press New York. ISBN 1-4179-7715-9.
- S. Koizumi, C.E. Nebel and M. Nesladek (2008). Physics and Applications of CVD Diamond. Wiley VCH. ISBN 3-527-40801-0.
- L.S. Pan and D.R. Kani (1995). Diamond: Electronic Properties and Applications. Kluwer Academic Publishers. ISBN 0-7923-9524-7.
- Pagel-Theisen, Verena (2001). Diamond Grading ABC: the Manual. Antwerp: Rubin & Son. ISBN 3-9800434-6-0.
- R.L. Radovic, P.M. Walker and P.A. Thrower (1965). Chemistry and physics of carbon: a series of advances. New York: Marcel Dekker. ISBN 0-8247-0987-X.
- M. Tolkowsky (1919). Diamond Design: A Study of the Reflection and Refraction of Light in a Diamond. London: E. & F.N. Spon.
- R.W. Wise (2003). Secrets Of The Gem Trade, The Connoisseur's Guide To Precious Gemstones. Brunswick House Press.
- A.M. Zaitsev (2001). Optical Properties of Diamond: A Data Handbook. Springer. ISBN 3-540-66582-X.
External links
[සංස්කරණය]- Properties of diamond: Ioffe database
- Interactive structure of bulk diamond (Java applet)
- Epstein, Edward Jay (1982). The diamond invention සංරක්ෂණය කළ පිටපත 2021-02-11 at the Wayback Machine (Complete book, includes "Chapter 20: Have you ever tried to sell a diamond?")
- "A Contribution to the Understanding of Blue Fluorescence on the Appearance of Diamonds" සංරක්ෂණය කළ පිටපත 2009-03-04 at the Wayback Machine. (2007) Gemological Institute of America (GIA)
- Tyson, Peter (November 2000). "Diamonds in the Sky". Retrieved March 10, 2005.