"ප්‍රතිලෝම ත්‍රිකෝණමිතික ශ්‍රිත" හි සංශෝධන අතර වෙනස්කම්

විකිපීඩියා වෙතින්
Content deleted Content added
සුළු r2.7.2) (රොබෝ එකතු කරමින්: et:Arkusfunktsioonid
සුළු r2.7.3) (රොබෝ එකතු කරමින්: tr:Ters trigonometrik fonksiyonlar
67 පේළිය: 67 පේළිය:
[[sl:Krožna funkcija]]
[[sl:Krožna funkcija]]
[[ta:நேர்மாறு முக்கோணவியல் சார்புகள்]]
[[ta:நேர்மாறு முக்கோணவியல் சார்புகள்]]
[[tr:Ters trigonometrik fonksiyonlar]]
[[uk:Обернені тригонометричні функції]]
[[uk:Обернені тригонометричні функції]]
[[zh:反三角函数]]
[[zh:反三角函数]]

13:05, 5 පෙබරවාරි 2013 තෙක් සංශෝධනය

ගණිතයෙහි, ප්‍රතිලෝම ත්‍රිකෝණමිතික ශ්‍රිත (විරල ලෙසින් වක්‍රමිතික ශ්‍රිත ලෙසින්ද හැඳින්වෙයි[1]) වනාහී සුදුසු පරිදී විෂය පථ සීමාකොට ඇති කල්හී ත්‍රිකෝණමිතික ශ්‍රිතයන්හී ප්‍රතිලෝම ශ්‍රිත වෙති.

ප්‍රති සයින්, ප්‍රති කොස් ආදිය සඳහා සයින්−1, කොස්−1, ආදී අංකනයන් බොහෝ විට භාවිතා වුවද, මෙම සම්මතය ශ්‍රිත සංයුතියක් නොව සංඛයාත්මක බලයක් දක්වන සයින්2(x) ආදී ප්‍රකාශනයන්හී පොදු ශබ්දාර්ථ හා සමගින් තර්කානුකූල පිළිගැටුමකට එළඹෙමින්, ගුණීකරණ ප්‍රතිලෝමය සහ සංයුතිමය ප්‍රතිලෝමය අතර ආකූලතාවයක් ඇති කරයි.

පරිගණක ක්‍රමලේඛ භාෂාවන්හිදී ප්‍රතිසයින්, ප්‍රතිකොස්, ප්‍රතිටෑන් යන ශ්‍රිත සාමාන්‍යයෙන් asin, acos, atan ලෙසින් හැඳින්වෙති. බොහෝ ක්‍රමලේඛන භාෂාවන් විසින් විචල්‍යය-ද්වයයෙහි atan2 ශ්‍රිතය සඳහා ඉඩ දක්වන අතර, මෙය විසින් (−π, π] පරාසය සහිතව, y / x හී ප්‍රතිටැංජනය ගණනය කරනු ලබන්නේ y හා x අගයයන් දී ඇති විටය.

ප්‍රධාන අගයයන්

ත්‍රිකෝණමිතික ශ්‍රිතයයන් සයෙන් කිසිවක් හෝ එකට-එක නොවන බැවින්, ප්‍රතිලෝම ශ්‍රිතයන් ඇතිවීමේදී ඒවාට සීමා පැනවෙති. එබැවින් ප්‍රතිලෝම ශ්‍රිතයන්හී පරාසයන් මුල් ශ්‍රිතයන්හී වසමෙහි නිසි උපකුලක වෙති.

නිදසුනක් ලෙසින්, y2 = x ලෙසින් යන වර්ග මූල ශ්‍රිතය අර්ථ දැක්වෙන සේම, y = ප්‍රතිසයින්(x) යන ශ්‍රිතය අර්ථ දැක්වෙන්නේ සයින්(y) = x ලෙසිනි. සයින්(y) = x වන පරිදී y සඳහා බහු අගයයන් ඇත; නිදසුනක් ලෙසින්, සයින්(0) = 0 වන අතර, සයින්(π) = 0 වෙමින්, සයින්(2π) = 0, ආදියද එසේ වෙති. මෙයින් ගම්‍ය වන්නේ ප්‍රතිසයින් ශ්‍රිතය බහු අගයීය වන බවකි: ප්‍රතිසයින්(0) = 0 වුවද, ප්‍රතිසයින්(0) = π, ප්‍රතිසයින්(0) = 2π, ලෙසින්ද වෙති. එක් අගයයක් පමණක් රිසි වන අවස්ථාවන්හිදී, එහි ප්‍රධාන ඛණ්ඩය වෙත ශ්‍රිතය සීමා කෙරෙයි. මෙම සීමා කිරීම සහිතව, වසමෙහි එක් එක් x අගය සඳහා ප්‍රතිසයින්(x) යන ප්‍රකාශනය විසින් ලබා දෙනුයේ, ප්‍රධාන අගය ලෙසින් හැඳින්වෙන එක් අගයයක් පමනි. මෙම ගුණාංග හිමි වන්නේ ප්‍රතිලෝම ත්‍රිකෝණමිතික ශ්‍රිත සඳහා පමනි.

ප්‍රධාන ප්‍රතිලෝමයන් පහත වගුවෙහි ලැයිස්තුගත කර ඇත.

නම සුපුරුදු අංකනය අර්ථ දැක්වීම සත්‍ය ප්‍රතිඵලය සඳහා x හි වසම සුපුරුදු ප්‍රධාන අගයෙහි පරාසය
(රේඩියන)
සුපුරුදු ප්‍රධාන අගයෙහි පරාසය
(අංශක)
‘‘‘ප්‍රතිසයින්’’’ y = ප්‍රතිසයින් x x = සයින් y −1 ≤ x ≤ 1 −π/2 ≤ y ≤ π/2 −90° ≤ y ≤ 90°
‘‘‘ප්‍රතිකොසයින්’’’ y = ප්‍රතිකොස් x x = කොස් y −1 ≤ x ≤ 1 0 ≤ y ≤ π 0° ≤ y ≤ 180°
‘‘‘ප්‍රතිටැංජන’’’ y = ප්‍රතිටෑන් x x = ටෑන් y සියළු තාත්වික සංඛ්‍යා −π/2 < y < π/2 −90° < y < 90°
‘‘‘ප්‍රතිකොටැංජන’’’ y = ප්‍රතිකොට් x x = කොට් y සියළු තාත්වික සංඛ්‍යා 0 < y < π 0° < y < 180°
‘‘‘ප්‍රතිසෙකන්ට්’’’ y = ප්‍රතිසෙක් x x = සෙක් y x ≤ −1 or 1 ≤ x 0 ≤ y < π/2 or π/2 < y ≤ π 0° ≤ y < 90° or 90° < y ≤ 180°
‘‘‘ප්‍රතිකොසෙකන්ට්’’’ y = ප්‍රතිකොසෙක් x x = කොසෙක් y x ≤ −1 or 1 ≤ x −π/2 ≤ y < 0 or 0 < y ≤ π/2 -90° ≤ y < 0° or 0° < y ≤ 90°

x යන්න සංකීර්ණ සංඛ්‍යාවක් වීමට ඉඩ ලදුයේ නම්, y හි පරාසය එහි තාත්වික කොටසට පමණක් අදාල වෙයි.

ආශ්‍රිත

  1. නිදසුනක් ලෙසින් Dörrie, Heinrich (1965). Triumph der Mathematik. Trans. David Antin. Dover. p. 69. ISBN 0-486-61348-8.