ඩොප්ලර් ආචරණය

විකිපීඩියා, නිදහස් විශ්වකෝෂය වෙතින්
වෙත පනින්න: සංචලනය, සොයන්න
ප්‍රභවයෙහි චලිතය නිසා තරංග ආයාමයේ වෙනස්වීම.
මෝටර් රථ එන්ජිමක් හෝ සයිරන් නලාවක් නිරීක්ෂකයකු දෙසට ළඟා වන විට, නිරීක්ෂකයාගෙන් ඉවතට යන විට දී ට වඩා එහි ශබ්දයෙහි තාරතාවය උස් වී ශ්‍රවණය වීමට ඩොප්ලර් ආචරණය හේතු වන අන්දම මෙම චලන චිත්‍රය මගින් නිරූපණය කරයි. රෝස පැහැ චාප ධ්වනි තරංග යි. රථය වම් පසට යත් ම, කිසියම් ස්ථානයක දී නිකුත් කරන ලද අනුයාත තරංග දෙකකින් පළමු වැන්න වම් පසට ගමන් කරන දුරට වඩා දුරක් දෙවැන්න වම් පසට ගමන් කරයි. එමනිසා මෝටර් රථයට ඉදිරියෙන් (වම් පසින්) සිටින නිරීක්ෂකයකු දෙසට එන සෑම තරංගයක් ම ඔහු වෙත ඒමට ගන්නා කාලය ඊට පෙර තරංගය ඔහු වෙත ඒමට ගන්නා කාලයට වඩා සුළු වශයෙන් අඩු වේ. මෙලෙස තරංගවල එකට කැටිවීම, ‍අනුයාත තරංග පෙරමුණු දෙකක් නිරීක්ෂකයා වෙත ළඟා වීමට ගන්නා කාල පරාසයන් ක්‍රමයෙන් අඩුවීමට හේතු වන නිසා එය උස් සංඛ්‍යාතයක් ශ්‍රවණය වීමට හේතු වේ. මෝටර් රථයට පසුපසින් (දකුණු පසින්) සිටින නිරීක්ෂකයකු දෙසට එන සෑම තරංගයක් ම ඔහු වෙත ඒමට ගන්නා කාලය ඊට පෙර තරංගය ඔහු වෙත ඒමට ගන්නා කාලයට වඩා සුළු වශයෙන් වැඩි වේ. මෙලෙස තරංගවල පැතිරීම, ‍අනුයාත තරංග පෙරමුණු දෙකක් නිරීක්ෂකයා වෙත ළඟා වීමට ගන්නා කාල පරාසයන් ක්‍රමයෙන් වැඩි වීමට හේතු වන නිසා එය සුළු වශයෙන් අඩු සංඛ්‍යාතයක් ශ්‍රවණය වීමට හේතු වේ.


ධ්වනි ප්‍රභවයක්, නිරීක්ෂකයකුට සාපේක්ෂ ව චලිතයක යෙදෙන විට තරංගයේ සංඛ්‍යාතය වෙනස් වීම, 1842 වසරේ දී පැරගුවේ රාජ්‍යයේ දී ඕස්ට්‍රේලියානු භෞතික විද්‍යාඥයකු වූ ක්‍රිස්ටියන් ඩොප්ලර් විසින් පළමු වරට ඉදිරිපත් කිරීමෙන් අනතුරුව එම සංසිද්ධිය ඩොප්ලර් ආචරණය නමින් හඳුන්වනු ලබයි. වාහනයක් සයිරන් නලාවක් නාද කරමින් නිරීක්ෂකයකු දෙසට එන විට, පසු කරන විට, නිරීක්ෂකයාගෙන් ඉවතට යන විට යන අවස්ථාවල දී මෙම සංසිද්ධිය පැහැදිලි ව අත්විඳිය හැක. ධ්වනි ප්‍රභවය නිරීක්ෂකයා දෙසට ළඟා වන විට ග්‍රහණය වන සංඛ්‍යාතය වැඩි වන අතර(ප්‍රභවය විසින් නිකුත් කරනු ලබන සංඛ්‍යාතයට සාපේක්ෂ ව), නිරීක්ෂකයාගෙන් ඉවතට යන විට ග්‍රහණය වන සංඛ්‍යාතය අඩු වේ. ප්‍රභවය හරියටම නිරීක්ෂකයා පසු කර යන අවස්ථාවේ දී ප්‍රභවය විසින් නිකුත් කරනු ලබන සංඛ්‍යාතය ම නිරීක්ෂකයාට ශ්‍රවණය වේ.

සංඛ්‍යාතයේ සාපේක්ෂ වැඩි වීම පහත පරිදි පැහැදිලි කළ හැක. තරංග ප්‍රභවය නිරීක්ෂකයා දෙසට චලිත වන විට, කිසියම් ස්ථානයක දී නිකුත් කරන ලද අනුයාත තරංග පෙරමුණු දෙකකින් පළමුවැන්න නිරීක්ෂකයා වෙත ළඟා වන ප්‍රමාණයට වඩා වැඩි ප්‍රමාණයක් දෙවැන්න නිරීක්ෂකයා වෙත ළඟා වේ. එබැවින් සෑම තරංග පෙරමුණක් ම නිරීක්ෂකයා වෙත ළඟා වීමට ඊට පෙර තරංග පෙරමුණ ගත් කාලයට වඩා සුළු වශයෙන් අඩු වූ කාලයක් ගනියි. මේ හේතුවෙන් අනුයාත තරංග පෙරමුණු දෙකක් නිරීක්ෂකයා වෙත ළඟා වීමට ගන්නා කාල පරාසය ක්‍රමයෙන් අඩු වේ. එය, සංඛ්‍යාතයේ වැඩි වීමට හේතු වේ. තරංග පෙරමුණු චලිත වන අතරතුර අනුයාත තරංග පෙරමුණු දෙකක් අතර පරතරය අඩු වන නිසා තරංග එකට "කැටි" වේ. විලෝම වශයෙන්, තරංග ප්‍රභවය නිරීක්ෂකයාගෙන් ඉවතට චලිත වන විට, කිසියම් ස්ථානයක දී නිකුත් කරන ලද අනුයාත තරංග පෙරමුණු දෙකකින් පළමු වැන්න නිරීක්ෂකයා වෙත ළඟා වන ප්‍රමාණයට වඩා අඩු ප්‍රමාණයක් දෙවැන්න නිරීක්ෂකයා වෙත ළඟා වේ. එමනිසා අනුයාත තරංග පෙරමුණු දෙකක් නිරීක්ෂකයා‍ වෙත ළඟා වීමට ත වන කාල පරාසය ක්‍රමයෙන් වැඩි වේ. එය සංඛ්‍යාතය අඩු වීමට හේතු වේ. අනුයාත තරංග පෙරමුණු අතර පරතරය වැඩි වන නිසා තරංග "පැතිරීමක්" වන බව කිව හැක.

මාධ්‍යයක් තුළින් ප්‍රචාරණය වන ධ්වනි තරංග වැනි තරංග සඳහා නිරීක්ෂකයාගේ සහ ප්‍රභවයේ ප්‍රවේග, තරංග ප්‍රචාරණය වන මාධ්‍යයට සාපේක්ෂ ව ගත යුතු ය. එබැවින් ප්‍රභවයේ ප්‍රවේගය, නිරීක්ෂකයාගේ ප්‍රව්ගය මෙන්ම ප්‍රචාරණ මාධ්‍යයේ ප්‍රවේගය ද සම්පූර්ණ ඩොප්ලර් ආචරණය සඳහා බලපායි. මෙම එක් එක් ආචරණය වෙන් වෙන් වශයෙන් විශ්ලේෂණය කෙරේ. ආලෝකය හෝ සාමාන්‍ය සාපේක්ෂතාවේ එන ගුරුත්වය වැනි, ප්‍රචාරණය සඳහා මාධ්‍යයක් අවශ්‍ය නොවන තරංග සඳහා ප්‍රභවයේ සහ නිරීක්ෂකයාගේ ප්‍රවේග අතර සාපේක්ෂ වෙනස පමණක් ඩොප්ලර් ආචරණය කෙරෙහි බලපායි.

විකාශනය[සංස්කරණය]

1842 දී ඩොප්ලර් විසින් ඉදිරිපත් කරන ලද "Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels" (ද්වීමය තාරකාවන්හි ඇති වණීවත් ආලෝකය මත සහ ස්වර්ගයේ ඇති තවත් තරු) නිබන්ධනයේ ප්‍රථම වරට මෙම ආචරණය ඉදිරිපත් කරන ලදී. .[1] මෙම උපකල්පිතය 1845 දී සී. එච්. ඩී. බයිස් බැලට් විසින් ධ්වනි තරංග සඳහා පරීක්ෂා කරන ලදී. ධ්වනි ප්‍රභවය තමා වෙත ළඟා වන විට ධ්වනියේ තාරතාවය වැඩි වූ බව ත්, ප්‍රභවය තමාගෙන් ඉවතට යන විට ධ්වනි සංඛ්‍යාතය අඩු වූ බව ත් ඔහු විසින් තහවුරු කරන ලදී.හිපොලයිට් ෆිසාඋ නම් විද්‍යාඥයා ද 1848 වසරේ දී මෙම සංසිද්ධිය ම විද්‍යුත් චුම්භක තරංග සඳහා ද සිදු වන බව ස්වාධීන ව අනාවරණය කර ගත්තේ ය. (ප්‍රංශයේ, සමහර අවස්ථාවල දී මෙම සංසිද්ධිය හඳුන්වනුයේ "ඩොප්ලර්-ෆිසාඋ ආචරණය" නමිනි. නමුත් සෙසු ලෝකය පිළිගන්නේ ෆිසාඋ විසින් කළ සොයා ගැනීම ඩොප්ලර් ගේ සොයාගැනීමට කළ සංකලනයක් පමණක් බව ත්, ඔහු විසින් එය සොයා ගත්තේ ඩොප්ලර්ගේ සොයා ගැනීමට වසර තුනකට පසුව බවත් ය.).බ්‍රිතාන්‍යයේ, ජෝන් ස්කොට් රසල් 1848 දී ඩොප්ලර් ආචරණය සම්බන්ධ ව පර්යේෂණාත්මක අධ්‍යයනයක් ද සිදු කළේ ය. [2]

ඩොප්ලර් විසින් 1842 දී පල කරන ලද නිබන්ධනයේ ඉංග්‍රීසි පරිවර්තනයක් ඇලෙක් ඊඩන් ගේ 'The Search for Christian Doppler නම් ග්‍රන්ථයේ අඩංගු වේ. [1]

මූලික සිද්ධාන්ත[සංස්කරණය]

ශාස්ත්‍රීය භෞතික විද්‍යාවේ දී, ප්‍රභවයේ හා ග්‍රාහකයේ සංඛ්‍යාත, මාධ්‍යය තුළින් ධ්වනි තරංගවල වේගයට වඩා අඩු වන විට, නිරීක්ෂිත සංඛ්‍යාතය f සහ විමෝචිත සංඛ්‍යාතය f0 අතර සම්බන්ධය පහත පරිදි ලබා දේ.:[3]

f = \left( \frac{v + v_r}{v + v_{s}} \right) f_0 \,
මෙහි,
v \; යනු මාධ්‍ය තුළින් තරංගයේ ප්‍රවේගය යි.
v_{r} \, යනු මාධ්‍යයට සාපේක්ෂ ව ග්‍රාහකයේ ප්‍රවේගය යි.; ග්‍රාහකය, ප්‍රභවය දෙසට චලිත වන්නේ නම් ධන වේ.
v_{s} \, යනු මාධ්‍යයට සාපේක්ෂ ව ප්‍රභවයේ වේගය යි. ; ප්‍රභවය, ග්‍රාහකයෙන් ඉවතට චලිත වන්නේ නම් ධන ‍වේ.

මින් එකක් අනෙකින් ඉවතට යන විට සංඛ්‍යාතය අඩු වේ.

ඉතහ සමීකරණය ධ්වනි තරංග සඳහා සත්‍ය වන්නේ මාධ්‍යයට සාපේක්ෂ ව ප්‍රභවයේ සහ ග්‍රාහකයේ වේග, ධ්වනි වේගයට වඩා අඩු වන විට දී පමණි. දෝංකාරය ලිපිය ද බලන්න.

ප්‍රභවය හා නිරීක්ෂකයා අතර සාපේක්ෂ චලිතය සරළ රේඛීය ව ඒ දෙක අතර එක එල්ලේ සිදු වන බව ඉහත සමීකරණය මගින් උපකල්පනය කරයි. ප්‍රභවය යම් කිසි කෝණයකින් යුක්තව නිරීක්ෂකයා වෙත ළඟා වන්නේ නම් (ඒකාකාර ප්‍රවේගයෙන්), පළමුව ඇසුණු නිරීක්ෂිත සංඛ්‍යාතය, විමෝචිත සංඛ්‍යාතයට වඩා වැඩි ය. ඉන් අනතුරු ව, ප්‍රභවය නිරීක්ෂකයා වෙත සමීප වත් ම නිරීක්ෂිත සංඛ්‍යාතයෙහි ඒකාකාර අඩු වීමක් ද, ප්‍රභවය නිරීක්ෂකයාට ආසන්නත ම අවස්ථාවේ දී සමාන සංඛ්‍යාතයක් ද, ප්‍රභවය නිරීක්ෂකයාගෙන් ඈත් වන විට ඒකාකාර ලෙස අඩු වන සංඛ්‍යාතයක් ද ශ්‍රවණය වේ. නිරීක්ෂකයා, ප්‍රභවයේ පථයට ඉතාම ආසන්න අවස්ථාවේ දී වැඩි සංඛ්‍යාතයේ සිට අඩු සංඛ්‍යාතයට වෙනස්වීම එක්වරම සිදුවේ. නිරීක්ෂකයා ප්‍රභවයේ පථයට ඈතින් සිටින විට උස් සංඛ්‍යාතයේ සිට පහළ සංඛ්‍යාතයට වෙනස් වීම ක්‍රමික ව සිදු වේ.

තරංගයේ වේගය, නිරීක්ෂකයා සහ ප්‍රභවය අතර සාපේක්ෂ වේගයට වඩා ඉතා වැඩි විට (මෙසේ වන්නේ ආලෝකය වැඩි විද්‍යුත් චුම්භක තරංග සඳහා ය.) නිරීක්ෂිත සංඛ්‍යාතය f සහ විමෝචිත සංඛ්‍යාතය f0 අතර සම්බන්ධය ලබා දෙන්නේ පහත සමීකරණය මගිනි. [3]

නිරීක්ෂිත සංඛ්‍යාතය සංඛ්‍යාතයේ විචලනය
f=\left(1-\frac{v_{s,r}}{c}\right)f_0
\Delta f=-\frac{v_{s,r}}{c}f_0=-\frac{v_{s,r}}{\lambda_{0}}
මෙහි,
v_{s,r} = v_s - v_r \, යනු ග්‍රාහකයාට සාපේක්ෂ ව ප්‍රභවයේ ප්‍රවේගය යි.: ප්‍රභවය සහ නිරීක්ෂකයා එකිනෙකින් වෙන් වෙන් ව ගමන් කරන විට එය ධන වේ.
c \, යනු තරංගයේ වේගය යි. (උදා- රික්තයක් තුළ විද්‍යුත් චුම්භක තරංග වේගය 3×108 m/s)
\lambda_{0} \, ප්‍රභවයෙහි සමුද්දේශ රාමුව තුළ දී සම්ප්‍රේශිත තරංගයේ තරංග ආයාමය.

පළමු මාත්‍රයේ ආසන්න කිරීම්වලට පමණක් මෙම සමීකරණ ද්විත්වය නිරවද්‍ය වේ. කෙසේ වෙතත්, අදාල තරංග වේගයට සාපේක්ෂ ව ප්‍රභවයේ සහ ග්‍රාහකයේ වේග අඩු විට දී සහ ප්‍රභවය සහ ග්‍රාහකය අතර දුර තරංගවල තරංග ආයාමයට වඩා විශාල වන විට දී මෙම සමීකරණ සැලකිය යුතු තරම් නිරවද්‍ය වේ. මෙම අවශ්‍යතා දෙකින් එකක් හෝ ඉක්මවන්නේ නම්, සමීකරණ තවදුරටත් නිරවද්‍ය නොවේ.

විශ්ලේෂණය[සංස්කරණය]

මෙහි දී ප්‍රබවය මඟින් නිකුත් කරනු ලබන ශබ්දයේ සංඛ්‍යාතය සත්‍ය වශයෙන්ම වෙනස් නොවන බව විශේෂයෙන් මතකයේ රඳවා ගත යුතුය. සිදුවන ක්‍රියාවලිය තේරුම් ගැනීම සඳහා පහත ප්‍රතිසමය සලකන්න. අයෙකු තවත් අයෙක් වෙත තත්පරයට එක බැඟින් බෝල විසි කරන විට බෝල ලැබෙන තැනැත්තාට බෝල ලැබෙන සීඝ්‍රතාවය ද තත්පරයට එක බැඟින් වේ. නමුත් බෝල විසිකරන්නා ලබන්නා දෙසට චලිත වේ නම් අනුයාත බෝල අතර පරතරය අඩුවන හෙයින් බෝල ලබන්නාට බෝල ලැබෙන සීඝ්‍රතාව ඉහල යයි. යම් හෙයකින් බෝල විසි කරන්නා ලබන්නාගෙන් ඉවතට චලිත වේ නම් එවිට මෙහි පරස්පරය සත්‍ය වේ. මේ අනුව ඩොප්ලර් ආචරණයේ දී බලපෑම සිදු වන්නේ තරංග ආයාමයට වන අතර එහි ප්‍රතිඵලයක් ලෙස නිරීක්ෂිත සංඛ්‍යාතය ද වෙනස් වේ. මෙය මෙසේ ද ප්‍රකාශ කළ හැක. තරංගයේ ප්‍රවේගය නියතව පවතින අතර තරංග ආයාමය වෙනස් වන හෙයින් එහි සංඛ්‍යාතය ද වෙනස් වේ.

මාධ්‍යයක් තුළින් f0 සංඛ්‍යාතයකින් යුක්තව සම්ප්‍රේශනය වන තරංග නිකුත් කරමින් ප්‍රභවය නිරීක්ෂකයාගෙන් ඉවතට චලිත වේ නම්, මාධ්‍යයට සාපේක්ෂ ව නිසල ව සිටින නිරීක්ෂකයකු ග්‍රහණය කරන තරංගයේ සංඛ්‍යාතය f පහත සමීකරණය මගින් ලබා දේ.

f = \left ( \frac {v}{v + v_{s}} \right ) f_0

මෙහි, ප්‍රභවය, නිරීක්ෂකයාගෙන් ඉවතට චලිත වන විට දී vs ධන වන අතර, ප්‍රභවය, නිරීක්ෂකයා දෙසට චලිත වන විට ඍණ වේ.

මෙයට සමාන විශ්ලේෂණයකින් චලිත වන නිරීක්ෂක‍යකු සහ නිසල ප්‍රභවයක් ඇති අවස්ථාවක දී නිරීක්ෂිත සංඛ්‍යාතය (ග්‍රාහකයාගේ ප්‍රවේගය vr ලෙස දක්වා ඇත.)පහත පරිදි ලැබේ.

f = \left ( \frac {v + v_{r}}{v} \right ) f_0

මෙහි දී ද පෙර සම්මතය පරිදි ම නිරීක්ෂකයා, ප්‍රභවය වෙත චලනය වන විට vr ධන වන අතර, නිරීක්ෂකයා, ප්‍රභවයෙන් ඉවතට චලිත වන විට ඍණ වේ.

මෙම සමීකරණ දෙක ම එක් කොට ප්‍රභවය සහ නිරීක්ෂකයා යන දෙක ම චලිත වන අවස්ථාවක් සඳහා පොදු සමීකරණයක් ගොඩනැගිය හැක.

f = \left ( \frac {v+v_{r}}{v + v_{s}} \right ) f_0

සාපේක්ෂ ව අඩු වේගයකින් චලිත වන ප්‍රභවයක් ඇති අවස්ථාවක vs,r, v ට සාපේක්ෂ ව කුඩා වන අතර සමීකරණය පහත පරිදි සරළ කළ හැක.

f = \left (1 - \frac {v_{s,r}}{v} \right ) f_0

මෙහි v_{s,r}=v_s-v_r \,.

මේ සියල්ල වලංගු වීම සඳහා ඉහත සඳහන් කළ සීමාවන් තුළ සිටීම අනිවාර්ය වේ. කිසිඳු ආසන්න කිරීමක් නොකර වඩාත් සංකීර්ණ වූ නිවැරදි ම සමීකරණය ගොඩනංවන්නේ නම්, (ප්‍රභවය, ග්‍රාහකයා සහ තරංගය හෝ සංඥාව එකිනෙකට සාපේක්ෂ ව රේඛීය ව චලිත වේ යැයි උපකල්පනය කිරීමෙන්) යම් යම් රසවත් සහ එනිසා ම පුදුම එලවන සුළු ප්‍රතිඵල ලබා ගත හැක. උදාහරණයක් ලෙස, රෙයිලි සාමිවරයා විසින් පල කරන ලද ධ්වනිය පිළිබඳ ඔහුගේ ශාස්ත්‍රීය ග්‍රන්ථයෙහි සඳහන් වන පරිදි, නියම ප්‍රවේගවලින් චලනය කරවන විට, තූර්ය වාදනයක් කණපිට පෙරලා ඇසීමට වුවද හැකියාව ඇත. මෙය ඩොප්ලර් ආචරණයේ "කාල ප්‍රතිවර්ථ ආචරණය" ලෙස හැඳින්වේ. තවත් වැදගත් නිගමනයක් වන්නේ, ඩොප්ලර් ආචරණය පොදුවේ කාලය මත ද රඳා පවතින බව යි. (කෙසේදයත්, ප්‍රභවයේ සහ නිරීක්ෂකයාගේ සාපේක්ෂ ප්‍රවේගවලට අමතර ව, සලකන මොහොතේ දී ඒවායේ පිහිටුම් ද දත යුතු වේ.). තවද ඇතැම් තත්ත්ව යටතේ දී ප්‍රභවයෙන් එකවිට සංඥා හෝ තරංග යුගලක් නිරීක්ෂකයා වෙත ළඟා විය හැක. (එමෙන්ම ඇතැම් විට කිසිදු සංඥාවක් ළඟා නොවීම ද සිදු විය හැක) මීට අමතරව නිරීක්ෂකයා සංඥාව දෙසට චලිත වීම සහ ඉන් ඉවතට චලිත වීම හැරුණු විට තවත් භව්‍යතාවයන් ද පවතී.

මෙම සියළු, අමතර සංකීර්ණතා අදාල වන්නේ පෞරාණික, එනම් සාපේක්ෂතාවාදී නොවන ඩොප්ලර් ආචරණයට වේ. නමුත් මෙම සියළු ප්‍රතිඵල සාපේක්ෂතාවාදී ඩොප්ලර් ආචරණය සඳහා ද වලංගු වේ.[තහවුරු​ කරන්න]

පොදු දුර්මත[සංස්කරණය]

බොහෝ භෞතික විද්‍යා ග්‍රන්ථ, වස්තුවක් නිරීක්ෂකයෙක් වෙත ළඟා වන විට නිරීක්ෂිත සංඛ්‍යාතය ඉහල යන බවත් වස්තුව නිරීක්ෂකයා පසුකර යත්ම අඩුවන බවත්, දෝෂ සහිතව දක්වා ඇති බව ක්‍රේග් බෝරෝන් විසින් 1991 දී පෙන්වා දී ඇත. [4] බොහෝ අවස්ථාවල දී, නිරීක්ෂකයා දෙසට වස්තුව චලිත වන විට සත්‍ය සංඛ්‍යාතයට වඩා ඉහල නිරීක්ෂිත සංඛ්‍යාත අගයකින් ඇරඹී ඒක විධීයව අඩු වී වස්තුව නිරීක්ෂකයාට ආසන්නතම මොහොතේ දී නිරීක්ෂිත සංඛ්‍යාතය සත්‍ය සංඛ්‍යාතයට සමාන වීම සිදුවේ. අනතුරුව වස්තුව පුද්ගලයාගෙන් ඉවතට චලිත වන විට ක්‍රමයෙන් සත්‍ය සංඛ්‍යාතයට වඩා නිරීක්ෂිත සංඛ්‍යාතය අඩු වීම සිදු වේ. බොරොන් දක්වන පරිදි මෙම සාවද්‍ය මතය හට ගෙන ඇත්තේ වස්තුවක් අප වෙත ළඟා වත්ම ඉන් නිකුත් වන ධ්වනි තීව්‍රතාව වැඩි වී වස්තුව අප පසු කරයත්ම තීව්‍රතා ක්‍රමයෙන් අඩු වීම ත්, මෙම තීව්‍රතාවයෙහි අඩුවීම සංඛ්‍යාතයේ අඩුවීම ලෙස සාවද්‍ය ව තේරුම් ගැනීම ත් නිසා ය.

යෙදීම්[සංස්කරණය]

නිසල ශබ්දවාහිනියක් මගින් විවිධ තාරතාවයන්ගෙන් යුත් පොලිස් සයිරන් නාද සාපේක්ෂ පිහිටුම්වලට අදාල ව පටිගත කිරීම

සයිරන් නලා[සංස්කරණය]

හදිසි අවස්ථාවල දී භාවිතා කරන වාහනවල සයිරන් නලා යමක් පසු කර යන විට දී නිසල ව ඇති විට ඇති තාරතාවයට වඩා ඉහළ තාරතාවයකින් හැඬවීම අරඹයි. නිරීක්ෂකයා ව පසු කර යන විට ක්‍රමයෙන් අඩු වී, නිරීක්ෂකයාගෙන් ඉවතට යන විට එහි ස්ථාවර තාරතාවයට වඩා අඩු තාරතාවයකින් යුතු ව චිරස්ථායී වේ. තාරකා විද්‍යාඥ ජෝන් ඩොබ්සන් මෙම සංසිද්ධිය විග්‍රහ කරන්නේ මෙසේ ය:

"සයිරන් නාදය සර්පණය වන්නේ එය ඔබ හා නොගැටෙන බැවිනි."

වෙනත් වචනවලින් කියතොත්, සයිරනය නිරීක්ෂකයා වෙත එක එල්ලේ පැමිනෙන්නේ නම්, වාහනය ඔහු හා ගැටෙන තුරු තාරතාවය ස්ථායී ව පවතී. (මක්නිසාදයත්, vs, r යනු අරීය සංරචකය පමණක් වන නිසා ය.) අනතුරු ව වෙනත් පහළ තාරතාවයකට ක්ෂණිකව එළඹේ. සයිරනයේ ප්‍රවේගයේ සහ දෘෂ්ටි රේඛාව අතර කෝණයේ ශ්‍රිතයක් ලෙස අරීය ප්‍රවේගය විචලනය වන නිසා :

v_{r}=v_s\cdot \cos{\theta}

මෙහි vs යනු මාධ්‍යයට සාපේක්ෂ ව ප්‍රභවයේ ප්‍රවේගය යි. \theta යනු නිරීක්ෂකයාගේ සිට ප්‍රභවය වෙත ඇති දෘෂ්ටි රේඛාවත්, ප්‍රභවයේ ඉදිරිපසට ඇති ප්‍රවේගය ත් අතර කෝණය යි.


තාරකා විද්‍යාව[සංස්කරණය]

ප්‍රකාශ වර්ණාවලියේ වර්ණාවලි රේඛාවල රක්ත විස්ථාපන සැසඳීම - සූර්යයා (වම) හා එකිනෙකට දුරින් පිහිටා ඇති මන්දාකිණී පන්ති (දකුණ) අතර

ආලෝකය වැනි විද්‍යුත් චුම්භක තරංගවල ඩොප්ලර් ආචරණය තාරකා විද්‍යාවේ දී බොහෝ ප්‍රයෝජනයවත් වන අතර රක්ත විස්ථාපනය හෝ නීල විස්ථාපනය යන ප්‍රතිඵලවලට ද හේතු වේ. පාථිවිය දෙසට එන හෝ පෘථිවියෙන් ඉවතට චලිත වන තාරකා සහ මන්දාකිණිවල ප්‍රවේග (එනම් අරීය ප්‍රවේග) ගණනය කිරීමට එය යොදා ගනී. පෙනෙනා ලෙසට හුදෙකලාව ඇති තරුවක් ඇත්තෙන්ම එසෙද යන වග සෙවීමට ත්, තරු සහ මන්දාකිණිවල භ්‍රමක ප්‍රවේගය සෙවීමට ත් මෙම සිද්ධාන්ත භාවිතා කරයි.

තාරකා විද්‍යාවේදී ඩොප්ලර් ආචරණය භාවිතය, තාරකාවල විද්‍යුත් චුම්භක වර්ණාවලි සන්තතික නොවන බවට ඇති අපගේ දැනුම මත රඳා පවතී. නිශ්චිත සංඛ්‍යාතවල දී, විවිධ රසායනික පදාර්ථවල ඉලෙක්ට්‍රෝනයක් එක් ශක්ති මට්ටමක සිට වෙනත් ශක්ති මට්ටමකට ගෙන යාම සඳහා අවශ්‍ය ශක්තිය හා සහසම්බන්ධිත වූ අවශෝෂණ රේඛා ප්‍රදර්ශනය කරයි. නිසල ආලෝක ප්‍රභවයකින් ලබා ගත් වර්ණාවලියේ සංඛ්‍යාතවලට වඩා අවශෝෂණ රේඛා වල සංඛ්‍යාත වෙනස් වීම තුළින් ඩොප්ලර් ආචරණය විද්‍යාමාන වේ. නිල් ආලෝකයේ සංඛ්‍යාතය, රතු ආලෝකයේ සංඛ්‍යාතයට වඩා වැඩි හෙයින්, ළළඟා වන තාරකා විද්‍යාත්මක ආලෝක ප්‍රභවයක් නීල විස්ථාපනය ප්‍රදර්ශනය කරන අතර ඉවතට චලිත වන තාරකා විද්‍යාත්මක ආලෝක ප්‍රභවයක් රක්ත විස්ථාපනය ප්‍රදර්නය කරයි.

ආසන්නයේ ම පිහිටා ඇති තාරකා ලැයිස්තුවේ, සූර්යයාට සාපේක්ෂ ව විශාලතම අරීය ප්‍රවේගයන් +308 km/s (BD-15°4041, LHS 52 ලෙස ද හැඳින්වේ., ආලෝක වර්ෂ 81.7 දුරින්) සහ -260 km/s (Woolley 9722,Wolf 1106 සහ LHS 64 ලෙස ද හැඳින්වේ. , ආලෝක වර්ෂ 78.2 දුරින්)වේ. අරීය ප්‍රවේගය ධන වීමෙන් තාරකාව සූර්යාගෙන් ඉවතට චලිත වීමත්, ඍණ වීමෙන් සූර්යා දෙසට චලිත වීමත් අර්ථ ගැන්වේ.

උෂ්ණත්ව මැනීම[සංස්කරණය]

ඩොප්ලර් ආචරණය බහුල ව භාවිත කරන තවත් යෙදීමක් වන්නේ ප්ලාස්මීය භෞතික විද්‍යාවේ සහ තාරකා විද්‍යාවේ, වර්ණාවලි රේඛාවක් විමෝචනය කරන වායුවක උෂ්ණත්වය(හෝ ප්ලාස්මාවේ අයන උෂ්ණත්වය) නිමානය කිරීම යි. තාපජ චලිතය හේතු කොට ගෙන සෑම අංශුවක් මගින් ම විමෝචනය කරන ආලෝකය සුළු වශයෙන් රක්ත හෝ නීල විස්ථාපනයන්ට බඳුන් වී තිබිමට ඉඩ ඇත. එබැවින් අවසන් ප්‍රතිඵලය වන්නේ වර්ණාවලි රේඛාව පුළුල් වීමයි. මෙම හැඩය ඩොප්ලර් ආකෘතිය ලෙස හඳුන්වන අතර රේඛාවේ පළල, විමෝචිත විශේෂිතයේ උෂ්ණත්වයේ වර්ගමූලයට සමානුපාතික වේ. මෙම වර්ණාවලි රේඛාව (ඩොප්ලර් පළල්වීමට බඳුන් වූ), උෂ්ණත්වය නිර්ණය කිරීමට යොදා ගත හැක.

රේඩාර්[සංස්කරණය]

අනාවරිත වස්තූන්ගේ වේග මැනීම සඳහා සමහර රේඩාර්වල ඩොප්ලර් ආචරණය යොදා ගනු ලබයි. රේඩාර් ප්‍රභවය වෙත ළඟා වන හෝ එයින් ඉවතට චලිත වන ඉලක්කයක් වෙත රේඩාර් කදම්භයක් විදිනු ලබයි. — උදා. වේග සීමා ඉක්මවූ මෝටර් රථ අනාවරණය කර ගැනීමට පොලිසිය විසින් රේඩාර් යොදා ගන්නා පරිදි- පරාවර්තනය වී නැවත රේඩාර් ප්‍රභවය මගින් අනාවරණය කර ගැනීමට පෙර, වඩා වැඩි දුරක් ගමන් කිරීමට සෑම අනුයාත රේඩාර් තරංගයකටම සිදුවේ. සෑම තරංගයකටම වඩා වැඩි දුරක් ගමන් කිරීමට සිදු වීමෙන් සෑම තරංග දෙකක් අතර ම පරතරය වැඩි වේ. එමගින් තරංග ආයාමය වැඩි වේ. යම් අවස්ථාවල දී, මෝටර් රථය රේඩාර් ප්‍රභවය දෙසට චලිත වන විට රේඩාර් කදම්භය විදිනු ලබයි. එවැනි අවස්ථාවල සෑම අනුයාත තරංගයකට ම අඩු දුරක් ගමන් කිරීමට සිදුවීම තුළින් තරංග ආයාමය අඩු වේ. වෙනත් අවස්ථාවක දී, ඩොප්ලර් ආචරණයේ ගණනයකිරීම් මගින් රථයේ වේගය ඉතාම නිවැරදි ව මැනිය හැක. තවදුරට ත්, දෙවන ලෝක යුද්ධ සමයේදී නිර්මාණය කරන ලද සම්බන්ධිත විලායකය (proximity fuze - කිසියම් ඉලක්කයකට එල්ල කර යවා පුපුරුවා හැරීමට ගන්නා යුධමය ස්ඵෝටකයක්) ද, නිවැරදි කාලයේ දී , ස්ථානයේ දී, උසේදී පුපුරුවා හැරීමට ඩොප්ලර් ආචරණය යොදා ගෙන ඇත. [තහවුරු​ කරන්න]

වෛද්‍ය මුර්තනය සහ රුධිර ප්‍රවාහ මැනීම[සංස්කරණය]

රුධිර ප්‍රවාහයේ දිශාව සහ රුධිරයේ ත්, කන්තුක පටලයේ ත්, අභිමත ලක්ෂ්‍යයක දී ප්‍රවේගය, යම් යම් සීමාවන් තුළ හිඳ, නිවැරදි ව තක්සේරු කිරීමට යොදා ගන්නා කන්තුකරේඛය නම් උපකරණයේ ද ඩොප්ලර් ආචරණ සිද්ධාන්තය යොදා ගනී. අතිධ්වනි කදම්භ හැකිතාක් රුධිර ප්‍රවාහයට සමාන්තර විය යුතුය යන්න එක් අවශ්‍යතාවය කි. කන්තුක කපාට ප්‍රදේශ සහ ඒවායේ ක්‍රියාකාරීත්වය, හෘදයේ වම් හා දකුණු පැති අතර අසාමාන්‍ය ආකාරයේ සන්නිවේදන ඇත්නම් ඒවා, කපාට තුළින් රුධිර කාන්දුවීම්(කපාටීය වැමෑරීම්- valvular regurgitation) ඇත්නම් ඒවා පිළිබඳ නිවැරදි තක්සේරු කිරීමට ත්, කන්තුක ප්‍රතිදානයේ ගණනය කිරීම් සඳහාත් මෙම ප්‍රවේග මිනුම් ප්‍රයෝජනවත් වේ.

"ඩොප්ලර්" යන්න වෛද්‍ය මූර්තනයේ එන "ප්‍රවේග මිනුම්" යන්න සමග තුල්‍යාර්ථිත වුව ද, බොහෝ අවස්ථාවල මනිනු ලබන්නේ ප්‍රතිග්‍රාහක සංඤාවේ සංඛ්‍යාත විචලනය (ඩොප්ලර් විචලනය) නොව කලා විචලනය යි.

රුධිර ප්‍රවාහවල ප්‍රවේග මිනුම් ප්‍රසවීය අතිධ්වනිවිද්‍යාව සහ ස්නායු විද්‍යාව වැනි වෛද්‍ය අතිධ්වනිවිද්‍යාවේ විවිධ කොටස්වල දී ද ‍යොදා ගැනේ. තානවය වැනි සනාල ගැටලු හඳුනාගැනීමේ දී ධමනි හා ශිරා තුළ රුධිර ප්‍රවාහ වේගය මැනීම පාදක වූ ඩොප්ලර් ආචරණය කාර්යක්ෂම උපාංගයක් වේ. .[5]

ප්‍රවාහ මැනීම්[සංස්කරණය]

තරල ප්‍රවාහයක ප්‍රවේගය මැනීම සඳහා ලේසර් ඩොප්ලර් ප්‍රවේගමානය (LDV)සහ ධ්වනි ඩොප්ලර් ප්‍රවේගමානය (ADV) වැනි උපකරණ වැඩි දියුණු කර ඇත. LDV මගින් ආලෝක කදම්භයක් ද ADV මගින් අතිධ්වනි නිපාතයක් ද විමෝචනය කරන අතර, ප්‍රවාහය සමග ගමන් කරන අංශ්‍රනෟ මත ඒවා පරාවර්තනය වීමෙන් එන පරාවර්තිත කදම්භවල තරංග ආයාමයන්ගේ ඩොප්ලර් මාරුව මනිනු ලබයි. නියම ප්‍රවාහය ගනිනු ලබන්නේ ජලයේ ප්‍රවේගයේ සහ කලාවේ ශ්‍රිතයක් ලෙසයි.

ප්‍රවේග ආකෘති මැනීම්[සංස්කරණය]

මූලිකව ම වෛද්‍යමය යෙදීම්වල දී ප්‍රවේග මැනීම් (රුධිර ප්‍රවාහවල)සඳහා වැඩි දියුණූ කර ඇත. දූලි අංශ්‍ර, වායු බුබුළු, තෙල් වැනි අවලම්භිත අංශ්‍ර අන්තර්ගත ඕනෑම ද්‍රවයක තථ්‍ය කාලීන සම්පූර්ණ ප්‍රවේග ආකෘතිය මැනීමට අතිධ්වනි ඩොප්ලර් ප්‍රවේගමානයට (UDV) පුළුවන.

ජලය තුළ ධ්වනි විද්‍යාව[සංස්කරණය]

හමුදා කටයුතුවල දී සක්‍රීය හා අක්‍රීය සෝනාර් පද්ධති යොදා ගැනීම තුළින් ඉලක්කයක ඩොප්ලර් විචලනය ගණනය කිරීමෙන් සබ්මැරීනයක වේගය නිර්ණය කිරීම කරනු ලබයි. සබ්මැරීනය අක්‍රීය ධ්වනිබෝයාවක් පසු කර යන විට, ස්ථාවර සංඛ්‍යාත ඩොප්ලර් ආචරණයට බඳුන් වන අතර, ධ්වනිබෝයාව මගින් වේගය සහ පරාසය ගණනය කළ හැක. සෝනාර් පද්ධතිය චලිත වන නැවකට හෝ වෙනත් සබ්මැරීනයකට සවි කොට ඇත්නම් සාපේක්ෂ ප්‍රවේගය ගණනය කළ හැක.

ශ්‍රව්‍ය[සංස්කරණය]

හැමන්ඩ් B-3 ඕගනය සමග සංඝටිත වූ සහ අතිප්‍රම්‍රඛ ව භාවිත වන්නා වූ ලෙස්ලි කථකය සඳහා ඩොප්ලර් ආචරණය භාවිත කරනුයේ, ශබ්ද විකාශකයක ශබ්දය වෘත්තාකාර මාර්ගයක ගමන් කරවීම සඳහා විදුලි මෝටරයක් මගින් ධ්වනි නලාවක් ශබ්ද විකාශකය වටා භ්‍රමණය කරවීම මගිනි. මෙමගින්, ඕගන ස්වරයක සංඛ්‍යාතය ඉතා වේගයෙන් උච්ඡාවචනය වන ලෙස ශ්‍රවණය වේ.

කම්පන මැනීම්[සංස්කරණය]

ලේසර් ඩොප්ලර් කම්පනමානය (LDV) යනු කම්පන මැනීම සඳහා වූ අස්පර්ශීය ක්‍රමයකි. LDV මගින් නිකුත් කරන ලේසර් කදම්භය අවශ්‍ය පෘෂ්ඨයට යොමු කිරීමෙන් , පෘෂ්ඨයේ චලිතය නිසා ලේසර් කදම්භයේ සංඛ්‍යාතයේ වන ‍ඩොප්ලර් ව්චලනය සැලකීමෙන් කම්පන විස්තාරය සහ සංඛ්‍යාතය සොයා ගත හැක.

බලන්න[සංස්කරණය]

පරිශීලන[සංස්කරණය]

  1. 1.0 1.1 Alec Eden The search for Christian Doppler,Springer-Verlag, Wien 1992. Contains a facsimile edition with an English translation.
  2. Scott Russell, John (1848). "On certain effects produced on sound by the rapid motion of the observer". Report of the Eighteen Meeting of the British Association for the Advancement of Science (John Murray, London in 1849) 18 (7): 37–38. http://www.ma.hw.ac.uk/~chris/doppler.html. Retrieved 2008-07-08. 
  3. 3.0 3.1 Rosen, Joe; Gothard, Lisa Quinn (2009). Encyclopedia of Physical Science. Infobase Publishing. p. 155. ISBN 0-816-07011-3. http://books.google.com/books?id=avyQ64LIJa0C. , Extract of page 155 සැ.යු.- මෙහි ප්‍රභවයේ සාපේක්ෂ වේගය සඳහා යොදා ගෙන ඇති සංකේතය (u) මෙම ලිපියෙහි යොදා ගෙන ඇති සංකේතයට(vs,r) ප්‍රතිවිරුද්ධ වේ.
  4. Bohren, C. F. (1991). What light through yonder window breaks? More experiments in atmospheric physics. New York: J. Wiley.
  5. D. H. Evans and W. N. McDicken, Doppler Ultrasound, Second Edition, John Wiley and Sons, 2000.

වැඩිදුර කියවීමට[සංස්කරණය]

  • "Doppler and the Doppler effect", E. N. da C. Andrade, Endeavour Vol. XVIII No. 69, January 1959 (published by ICI London). Historical account of Doppler's original paper and subsequent developments.
  • Adrian, Eleni (24 June 1995). "Doppler Effect". NCSA. http://archive.ncsa.uiuc.edu/Cyberia/Bima/doppler.html. සම්ප්‍රවේශය කෙරුණු දිනය 2008-07-13. 

බාහිර සබැඳි[සංස්කරණය]

"http://si.wikipedia.org/w/index.php?title=ඩොප්ලර්_ආචරණය&oldid=250917" වෙතින් සම්ප්‍රවේශනය කෙරිණි